Interseismic Deformation in Models with Stress Dependent Fault Creep

Eric A Hetland: Univ. of Michigan Mark Simons: Caltech Eric M Dunham: Harvard/Stanford Ravi Kanda: Caltech

June 22-26 Workshop on Numerical Modeling of Crustal Deformation and Earthquake Faulting

introductory statements:

- most earthquake cycle models with stress-dependent fault slip are motivated by understanding earthquakes (fast or slow)
- many geodetically motivated postseismic models with stress-driven postseismic fault creep
- geodetically motivated interseismic fault creep models almost always kinematic

fault- or shear-zone rheologies:

- linear viscous
- nonlinear viscous (with or without grain size dependence)
- rate-dependent friction (RD friction; aka, velocity strengthening friction, hot friction)
- rate- and state-dependent friction (RS friction; can be velocity strengthening or weakening)

Postseismic fault creep models – spring & slider models

RD friction

Marone et al., 1991

Vs.

Postseismic fault creep models - spring & slider models

V_s

RD friction

Marone et al., 1991

NL viscous

RD friction

June 22-26 NMCDEF Workshop; Hetland et al.

RS friction

Postseismic fault creep models - 3D models I

Marone et al., 1991

RS friction

Johnson et al., 2006

RD friction

June 22-26 NMCDEF Workshop; Hetland et al.

GEOLOGICAL SCIENCES

Postseismic fault creep models - 3D models II

Perfettini & Avouac, 2007

June 22-26 NMCDEF Workshop; Hetland et al.

Johnson et al., 2009

UNIVERSITY OF MICHIGAN GEOLOGICAL SCIENCES

interseismic fault creep – **steady**:

June 22-26 NMCDEF Workshop; Hetland et al.

GEOLOGICAL SCIENCES

geodetic view of interseismic megathrust mechanics – **steady**:

geodetic view of interseismic megathrust mechanics – **steady**:

June 22-26 NMCDEF Workshop; Hetland et al.

UNIVERSITY OF MICHIGAN GEOLOGICAL SCIENCES geodetic view of interseismic megathrust mechanics – **far from steady**:

wide-spread postseismic fault creep

maybe:

transient interseismic creep causes regions to appear partially coupled

(e.g., Wang & Dixon)

we are missing lots of small "asperities" in this figure (e.g., Suwa et a., 2006)

GEOLOGICAL SCIENCES

Interseismic Fault Creep Model

- driven by slip on extension of fault
- both dip- and strike-slip
- multiple asperities
- irregular earthquake sequences
- heterogeneous fault-zone rheology
- friction, viscous, non-linear viscous
- spin-up model over multiple ruptures

"asperities" = regions with ONLY coseismic slip

impose coseismic slip (both in and out of asperities), **solve for interseismic creep**

assume fault geometry, rheology, and asperities

1)

2) impose repeated coseismic slip

UNIVERSITY OF MICHIGAN

GEOLOGICAL SCIENCES

solve for interseismic and postseismic fault creep

models are spun-up, so that fault tractions at any time are only consequence of the previous earthquakes and <u>fault loading</u>

By limiting the problem, computation is decreased dramatically.

tie computations to known eq. histories & constrain rheologies of non-seismic regions of fault from geodetic observations

UNIVERSITY OF MICHIGAN GEOLOGICAL SCIENCES building an interseismic fault creep model:

GEOLOGICAL SCIENCES

building an interseismic fault creep model:

$$\tau(\vec{z},t) = \int_{\Lambda} s(\vec{\zeta},t) K(\vec{z};\vec{\zeta}) d\vec{\zeta}$$

includes the slip on the fault off-fault rheology finite fault
including fault loading:

$$\tau(\vec{z},t) = \int_{\Lambda} s(\vec{\zeta},t) K(\vec{z};\vec{\zeta}) d\vec{\zeta} + \int_{\Lambda_{\infty}} t \, VK(\vec{z};\vec{\zeta}) d\vec{\zeta}$$

$$\tau(\vec{z},t) = \int_{\Lambda} \left[s(\vec{\zeta},t) - t \, V \right] K(\vec{z};\vec{\zeta}) d\vec{\zeta}$$
e.g.; Rice, 1993; Liu and Rice, 2005.
Note: no seismic radiation damping (e.g., Rice, 1993) - there are no seismic waves & no problems with exploding slip velocities in our models...

building an interseismic fault creep model:

$$\tau(\vec{z},t) = \int_{\Lambda} \left[s(\vec{\zeta},t) - Vt + S_o(\vec{\zeta},t) \right] K(\vec{z};\vec{\zeta}) d\vec{\zeta}$$

interseismic loading earthquakes

tract on fault

(imposed)

(imposed)

UNIVERSITY OF MICHIGAN GEOLOGICAL SCIENCES

$$\tau' = \int_{\Lambda} \left[s' - V't' + S'_o \right] K' d\zeta'$$

use K from finite dislocation solutions, requires fault to be meshed today we use Okada 1992 to generate K IE reduced to an algebraic system

$$\tau' = \int_{\Lambda} \left[s' - V't' + S'_o \right] K' d\zeta'$$

linear viscous

non-linear viscous

rate-dep (hot) friction

rate-state friction

GEOLOGICAL SCIENCES

$$\tau' = \int_{\Lambda} \left[s' - V't' + S'_o \right] K' d\zeta'$$

linear viscous

$$v = \tau / \alpha_1$$
 $\alpha_1 = \eta / h$

non-linear viscous

rate-dep (hot) friction

$$v' = \tau' / \alpha'_1$$

. . .

$$\alpha_1' = \alpha_1 v_T \frac{D}{\mu s_o}$$

rate-state friction

$$\tau' = \int_{\Lambda} \left[s' - V't' + S'_o \right] K' d\zeta'$$

linear viscous

$$v = \tau^n / \alpha_n$$

non-linear viscous (Montési, 2004)

$$v' = (\tau')^n / \alpha'_n$$

rate-dep (hot) friction

$$\alpha_n' = \alpha_n v_T \left(\frac{D}{\mu s_o}\right)^n$$

GEOLOGICAL SCIENCES

rate-state friction

$$\tau' = \int_{\Lambda} \left[s' - V't' + S'_o \right] K' d\zeta'$$

linear viscous

$$v = \operatorname{sgn}\{\tau\} 2v_o \sinh\left\{\frac{|\tau| - \sigma_E f_o}{(a-b)\sigma_E}\right\}$$

01

non-linear viscous

$$\rho_{o} = \sigma_{T}$$

 $\rho_{h} = f_{o}/(a-b)$

 $\alpha'_{h} = (a-b)\sigma'_{E}$

11

rate-dep (hot) friction

(e.g., Marone et al., 1991, Linker & Rice, 1997)

rate-state friction

$$v' = 2e^{-\rho_h} \sinh\left\{\frac{\tau'}{\alpha'_h}\right\}$$

sinh for consistency for creep at low τ (Rice & Ben-Zion, 1996)

$$\tau' = \int_{\Lambda} \left[s' - V't' + S'_o \right] K' d\zeta'$$

linear viscous

$$f = f_o + a \ln\left\{\frac{v}{v_o}\right\} + b \ln\left\{\frac{v_o\theta}{L}\right\}$$

non-linear viscous

rate-dep (hot) friction

rate-state friction

(e.g. Dieterich, 1979; Ruina 1983) $f_o =$ reference friction a,b = frictional parameters $v_o =$ reference slip rate L = slip length-scale $\theta =$ state parameter $b/a < 1 \rightarrow$ velocity strengthening

$$\tau' = \int_{\Lambda} \left[s' - V't' + S'_o \right] K' d\zeta'$$

linear viscous

$$f = f_o + a \ln\left\{\frac{v}{v_o}\right\} + b \ln\left\{\frac{v_o\theta}{L}\right\}$$

non-linear viscous

rate-dep (hot) friction

$$= f_{o} + a \ln \left\{ \frac{1}{v_{o}} \right\} + b \ln \left\{ \frac{1}{L} \right\}$$

$$v_{o} = v_{T}$$

$$\rho = f_{o}/a$$

$$\alpha' = a\sigma'_{E}$$

$$\gamma = b/a$$

$$L' = L/s_{o}$$

$$v' = 2e^{-\rho} \sinh \left\{ \frac{\tau'}{\alpha'} \right\} \left[\frac{\theta'}{L'} \right]^{-\gamma}$$

$$\frac{\partial \theta'}{\partial t'} = 1 - \frac{\theta' v'}{L'} \quad \Omega = \frac{\theta' v'}{L'}$$

rate-state friction (e.g. Dieterich, 1979; Ruina 1983)

UNIVERSITY OF MICHIGAN GEOLOGICAL SCIENCES

interseismic fault creep model:

$$\tau' = \int_{\Lambda} \left[s' - V't' + S'_o \right] K' d\zeta'$$

linear viscous

$$v' = \tau' / \alpha'_1$$

non-linear viscous

$$v' = (\tau')^n / \alpha'_n$$

rate-dep (hot) friction

$$v' = 2e^{-\rho_h} \sinh\left\{\frac{\tau'}{\alpha'_h}\right\}$$

rate-state friction

$$v' = 2e^{-\rho} \sinh\left\{\frac{\tau'}{\alpha'}\right\} \left\lfloor\frac{\theta'}{L'}\right\rfloor^{-\gamma}$$
$$\frac{\partial\theta'}{\partial t'} = 1 - \frac{\theta'v'}{L'}$$

June 22-26 NMCDEF Workshop; Hetland et al.

GEOLOGICAL SCIENCES

Interseismic Fault Creep Model

• spin-up model over multiple ruptures

"asperities" = regions with ONLY coseismic slip

impose coseismic slip (both in and out of asperities), **solve for interseismic creep**

assume fault geometry, rheology, and asperities

1)

2) impose repeated coseismic slip

solve for interseismic and postseismic fault creep

models are <u>spun-up</u>, so that fault tractions at any time are only consequence of the previous earthquakes and <u>fault loading</u>

2D strike-slip model

2D, strike-slip fault

asperity from surface to z' = -1.0

periodic rupture (every T)

spin-up until interseismic deformation is independent of the initial conditions and is the *same in all seismic cycles* (cycle invariant)

coseismic slip (imposed)

coseismic change in fault traction

June 22-

CIENCES

2D model – Spin-Up: tractions outside asperity

June 22-26 NMCDEF Workshop; Hetland et al.

GEOLOGICAL SCIENCES

UNIVERSITY OF MICHIGAN

GEOLOGICAL SCIENCES

average traction supported on the fault once spun-up = τ_{f} = (absolute) fault strength

linear viscous – $\tau_{f} = \alpha_{1}$ non-linear viscous – $\tau_{f} = (\alpha_{n})^{1/n}$ frictional – $\tau_{f} = \alpha_{h} \rho_{h} = \alpha' \rho$

fault domain size I RS friction

GEOLOGICAL SCIENCES

fault domain size II RD friction

GEOLOGICAL SCIENCES

fault zone rheology: viscous & RD/hot friction I

$n>1 \rightarrow more localized$ α_n small \rightarrow more variation

 α_h small \rightarrow postseismic creep over broader region $\alpha_{\rm h} = (a-b)\sigma_{\rm F}$ small \rightarrow unclamped fault $\rho_h \rightarrow$ little effect

fault zone rheology: rate-state friction

 $\rho = 10$

γ=0.9

α´=0.1

pulse-like postseismic creep

L' large \rightarrow isolated postseismic creep pulse, gentle front Ω >1 for entire postseismic

L´ small → sharp onset of postseismic creep pulse

 $\Omega \neq 1$ only before postseismic creep

RS friction vs RD/hot friction

$L' \rightarrow 0$: onset of postseismic sharp at depth $\Omega \approx 1$ for most of postseismic

colored lines: RS friction $\gamma = 0.9, \rho = 10, \alpha = 0.1$ black lines: RD/hot friction $\rho_{h}=100, \alpha_{h}=0.01$

except for very early postseismic times, RD/hot friction is a good approximation of interseismic fault creep (also, Perfetinni & Ampuero, 2008)

Why is the steady deformation important? A 2D toy model:

determine homogeneous RSF parameters from forward model with (slightly) heterogenous RSF

 → model is spun-up assuming periodic earthquakes
 → use both steady late-interseismic velocities and transient postseismic displacements

Why is the steady deformation important? A 2D example:

June 22-26 NMCDEF Workshop; Hetland et al.

determine homogeneous RSF parameters from forward model with (slightly) heterogenous RSF

→ broad range of models fit the late-cycle interseismic velocities
 → only small range of models fit both interseismic and postseismic displacements

GEOLOGICAL SCIENCES

toy megathrust – model:

- planar fault, 20° dip, ~8k cells
- velocity strengthening friction
- L' increases in far field to match fault cell size
 - (Perfettini and Apuero, 2008)
- other frictional parameters constant over fault
- spun-up with periodic eqs. from steady fault tractions (<5 cycles, <<10 minutes)

coseismic slip

UNIVERSITY OF MICHIGAN

GEOLOGICAL SCIENCES

toy megathrust – heterogeneous fault zone \rightarrow complicated fault creep:

toy megathrust – heterogeneous fault zone \rightarrow complicated fault creep:

if coseismic slip & postseimic slip occur on same region of the fault, should consider the coseismic change in frictional state

strike-slip model, coseismic slip tapers to zero over a "transition region at depth ~50% size of the asperity, drop θ to L/v_{coslip} during coseismic slip

 $= 0.5 \times 10^{-4}$ 50 postseismic surface velocit 40 $= 0.1 \times 10^{-3}$ `≚ ³⁰ 20 = 0.5x10⁻³ 10 =1-0x10≦ 2.5 0.0 0.5 1.0 1.5 2.0 3.0 ý

UNIVERSITY OF MICHIGAN

GEOLOGICAL SCIENCES

some ending points:

- spin-up is important (spin-up in these models requires assuming ruptures)
 - stresses should be consistent with long-term fault activity
 - locking/directivity constraints should be consistent with long-term fault activity
 - stress-shadows contain information about fault rheology
 - simultaneous modeling of interseismic and postseismic geodetic observations can constrain plausible fault zone rheologies
- fault domain size is important pervasive creep late in cycle due to BC stresses when driving slip too close
- at low L (D_c)
 - postseismic creep pulse sharp onset
 - RD friction ≈ RS friction except for immediate postseismic (e.g., Johnson et al., 2006; Perfettini and Ampuero, 2008)
- delayed postseismic creep at low L and increased α =a σ_{E}

more to think about:

- "geodetically motivated" full seismic cycle model:
 - need high resolution (space&time) during coseismic slip
 - need lower resolution (space&time) during interseismic slip, but BC's farther away
 - matching calculations to known earthquakes requires solving for many unknowns simultaneously
- BC's relatively simple in these models, is local loading ("back-slip") sufficient for interseismic stress-driven creep?
- shear-zones in lower crust may have finite thickness
- faults/shear-zones may "seed" into zone of distributed creep at lower crust/upper mantle depths
- grain-size-dependent ductile creep may be appropriate for shear-zones at depth (Montési and Hirth, 2003)

CFEM: Crustal Finite Element Modeling