3D Viscoelastic Earthquake Cycle Models

Estimating fault slip rates, locking distribution, elastic/viscous properites of lithosphere/asthenosphere

Kaj M. Johnson Indiana University

In collaboration with: Paul Segall, Stanford; Ray Chuang, Indiana; Junichi Fukuda, Indiana University (now at ERI)

Conceptual Model of Lithosphere

Methodology/Philosophy

Forward Model

Inverse Method

- Need fast models
- Semi-analytical methods
 propagator matrix method
- boundary element methods for stress boundary conditions

- Bayesian, probabilistic
- large number of unknown model parameters – no optimization – want posterior probability distributions
- Monte Carlo sampling
- need to compute 100 K's of forward computations

Talk Outline

• Geologic/Geodetic fault slip rate discrepancy in southern California

- model dependence on slip rate estimate
- Illustration with 2D models (infinitely long faults)
- Inversions with 2D and 3D models -- reconcile discrepancy

• San Francisco Bay Area interseismic deformation

inversion for:
 Fault slip rate
 Locking distribution
 Asthenosphere viscosity
 Earthquake repeat times

Slip Rate Discrepancies in Southern California

Fault Slip Rates and Interseismic Deformation: Mojave Region

2D Viscoelastic Earthquake Cycle Model

Mojave segment of SAF system

2D Viscoelastic Earthquake Cycle Model

Mojave segment of SAF system

3D Cycle Block Model for Southern California

Probabilistic Bayesian Inversion

Posterior distribution

23

19

27

San Andreas slip rate (mm/yr)

31

35

Hayward slip rate (mm/yr)

Likelihood

11 9 9 7 0 1 1 1 1 1 1 23 27 31 35 San Andreas slip rate (mm/yr)

 $= k \cdot$

Х

Prior distribution

geologic data

geodetic data & model

 $p(\Omega, \mathbf{n}, \mathbf{w}_{GPS}, \mathbf{w}_{TRI} | \mathbf{d}) = p(\mathbf{d} | \Omega, \mathbf{n}, \mathbf{w}_{GPS}, \mathbf{w}_{TRI})$ Euler poles (linear) Relative weights on data Nonlinear parameters $p(\mathbf{\Omega}, \mathbf{n}, \mathbf{w}_{\text{GPS}}, \mathbf{w}_{\text{TRI}})$

Conceptual Model of Lithosphere

Simultaneous Estimation of Long-term Slip Rates and Locking Distribution

Creep Rate Linearly Related to Euler Poles

boundary condition: creep at constant stress (zero stressing rate)

$$\begin{split} g_{e}^{\cup}(z,t)\dot{s}_{L}^{\top}T + g_{e}^{L}(z,t)(\dot{s}_{L}^{-}\dot{s}_{i}^{-})T + g_{c}^{L}(z)\dot{s}_{i} &= 0 \\ g \sim \text{Green's functions} & \dot{s}_{L}^{-} \sim \text{Iong-term slip rate} \\ \dot{s}_{i}^{-} & \text{interseismic creep rate} \\ g_{e}^{\cup}(z,t)\dot{s}_{L}^{-}T + g_{e}^{L}(z,t)(\dot{s}_{L}^{-}\dot{s}_{i}^{-})T + g_{c}^{L}(z)\dot{s}_{i}^{-}T &= 0 \\ \dot{s}_{i}^{-} &= \dot{s}_{L}^{-}\frac{T[g_{e}^{\cup}(z,t) + g_{e}^{L}(z,t)]}{g_{c}^{L}(z) - g_{e}^{L}(z,t)T} \end{split}$$

$(\dot{s}_{L} - \dot{s}_{i})T = \dot{s}_{L}T$	$-\frac{T[g_{e}^{\cup}(z,t)+g_{e}^{\scriptscriptstyle L}(z,t)]}{g_{e}^{\scriptscriptstyle L}(z)-g_{e}^{\scriptscriptstyle L}(z,t)T}$
---	--

We nearly have a method to simultaneously estimate:

- (1) long-term fault slip rates
- (2) Interseismic creep rates
- (3) Location of locked patches
- (4) Lithosphere viscosity
- (5) Elastic thickness