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Typical structure of a mature fault

Internal Structure of Principal Faults of the
North Branch San Gabriel Fault

(2) (3)@4) @) (2 (

1) Undeformed Host Rock
2) Damaged Host Rock (highly cracked, 10-100 m)

fault % 3y Foliated Zone (granulated fault zone, 1-10 m) fault
#ON® | 4) Central ultracataclasite layer (10-100 mm) } core

F. Chester, J. Evans and R. Biegel, J. Geoph. Res., 98 (B1), 771-786 (1993)



Damage zone
observations

Caleta Coloso fault,
Atacama Desert,

Chile
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Damage zone observations

[Poliakov, Dmowska and Rice, JGR, 2002]

Map view: Steep S_, . direction, ¥'= 60°;
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secondary failures on extensional side:
Landers 1992
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(fault map from Sowers et al., 1994; .
stress from Hardebeck and Hauksson, 2001)
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Damage zone observations
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Fault friction, —o?

initial conditions i g_yo (Stress positive in tension)
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Fault friction,
initial conditions
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Fault friction,
initial conditions
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Off-fault material description Linear elasticity with Drucker-Prager
plastic yield criterion:

Drucker-Prager
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Off-fault material description Linear elasticity with Drucker-Prager
plastic yield criterion:

Hardening of yield surface, A Plastic dilatancy, 3
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> increment of increment of
—O4k /3 plastic volumetric plastic “shear
strain strain”
h =0 : no plastic hardening =0 : no plastic dilation

(perfectly plastic)



Measures of proximity to failure of initial stress state
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Measures of proximity to failure of initial stress state

On fault Off fault
AT
A
fp ¢
_ XYy
fo fo — g —,UG]?]< /3 H
yy R
£l N * % 6, c
! - - e
D, 0 6% 13
S = fp _ fo CF = %o
fo o fr ~HOk /3

(S, CF, and ¥ are interdependent)



Evolution of plastic strain during rupture
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Locations of plastic strain: Effect of pre-stress angle (‘)



Locations of plastic strain: Effect of pre-stress angle (V)
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Locations of plastic strain: Effect of pre-stress angle (V)
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Localizations: effect of grid refinement
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Increasing grid refinement ——




Localizations: hardening eliminates features

Effects of

increasing
h>hD.
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Increasing hardening




How do we account for fluid saturation?

How does it affect deformation patterns?



Undrained deformation

stressing timescale

when —— << 1
diffusive timescale

over lengthscale
of interest

For rapid stressing of dynamic rupture, pore fluid diffusion is
negligible (“undrained’’) down to lengths of O(mm-cm)




Undrained deformation

stressing timescale
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For rapid stressing of dynamic rupture, pore fluid diffusion is
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Undrained poroelastic response:
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Undrained deformation

stressing timescale

when —— << 1
diffusive timescale

over lengthscale
of interest

For rapid stressing of dynamic rupture, pore fluid diffusion is
negligible (“undrained’’) down to lengths of O(mm-cm)

Undrained poroelastic response: Material strength depends on
effective stress
Ao kek
Ap, =—-B O;j = 0j; + pojj

3 ]

Skempton coefficient, typ. 0.5-0.9



Undrained deformation: Transformation of yield criterion
[e.g., Rudnicki, 2000; Viesca et al., 2008]

Yy M, undrained (dm = 0)
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Undrained deformation: Transformation of yield criterion
[e.g., Rudnicki, 2000; Viesca et al., 2008]
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Effect of
Skempton

coefficient B
(h=0)

Neglects fluid
saturation

Consider
saturation

Y =14°

Viesca et al. (2008)
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Effect of Skempton

coefficient B
(h=0)

Neglects fluid
saturation
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Undrained deformation: Transformation of yield criterion
[e.g., Rudnicki, 2000; Viesca et al., 2008]

Undrained poro-elastic-plastic response:

dpy, = Bdek ,B\()

3

dilatancy coefficient



Undrained deformation: Transformation of yield criterion
[e.g., Rudnicki, 2000; Viesca et al., 2008]

Undrained poro-elastic-plastic response:

_ A0 o
dp, =—B 3 ,B\ (...)

dilatancy coefficient

l “Dilatant hardening effect”
db, = h,dy p B
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b, for >0
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Suppression of localization
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Rudnicki and Rice (1975): A critical
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localization is expected to occur.

In our simulations: 2 =0

Viesca et al. (2008)



Suppression of localization
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Suppression of localization
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Suppression of localization
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What happens at the slipping surface?



What happens at the slipping surface?

Previously, we neglegted pore  z— _ £(§)( Oy + Py)
pressure change on slip surface



compression
Ex <0

T= _f(g)(o-yy + ps) Ay Ap+ > O
u

What happens at the slipping surface?

Previously, we neglected pore
pressure change on slip surface

- /

\

\\ - / eE

Ap, <0

extension
€y >0

Undrained conditions — discontinuity in pore pressure at slip surface

P



compression
Ex <0

T= _f(g)(o-yy + ps) Ay Ap+ > O
u

What happens at the slipping surface?

Previously, we neglected pore
pressure change on slip surface

- /

\

\\ - / eE

Ap, <0

extension
€y >0

Undrained conditions — discontinuity in pore pressure at slip surface

However, pore pressure should be continuous.

Will that lead to a pressure decrease or increase on the surface?
(strengthening) (weakening)

P



Fault observations: material surrounding principal slip surface

Cataclastic Host Rocks
Leucocratic basement

~ | Melanocratic basement
Medium sandstone

Fine sandstone

Ultracataclasite
Dark yellowish brown

- Olive black

—— Contacts and fractures

= Prominent fracture surface

O :;‘ 7:;:_ ‘:‘5,_15.5 ,:i_ A }ultl'ﬂC&tﬂClaSlte | | 3 ; jilf | T : .': S

_Hj'

Chester and Chester (1998)

principal slip surface



Model image of fault “acy, Principal slip surface may lie
within or to one side of

ultracataclasite




Model image of fault p % g, Principal slip surface may lie
Oz, within or to one side of
ultracataclasite

On short timescale of rupture,
diffusive region of O(mm-cm)
contributes to surface pore pressure

/

Slip surface localized to one side:

less permeable

more permeable



Model image of fault p % g, Principal slip surface may lie
Oz, © within or to one side of
ultracataclasite

On short timescale of rupture,
diffusive region of O(mm-cm)
contributes to surface pore pressure

k — permeability

hy —
P MBstor -

more permeable viscosity storage (compressibility)

Slip surface localized to one side:

less permeable

(04




Effects of near-fault fluid flow: poroelastic material

A

compression +
Ex <0 /Ap u >0
—>
i >
N / 0 x Ar
Ap. <0 extension
Pu x>0

(more permeable side)

modified from Dunham and Rice (2008)



Effects of near-fault fluid flow: poroelastic material

compression A +
€z <0 Apy >0
N »/ M
A / T X Ap
Ap, <0 extension \/?
. x>0

More permeable side wins:
its extension induces suction

(strengthening) modified from Dunham and Rice (2008)

(more permeable side)



Effects of near-fault fluid flow: poroelastic material

compression A +
Ex <0 Apy >0
N »/ M
D / T X Ap
Ap_ <0 extension \/?
. x>0

More permeable side wins:
its extension induces suction

(strengthening) modified from Dunham and Rice (2008)

(more permeable side)

Pore pressure on the surface:

Aps =T Apy, +8 Apy + | |
and G are weights determined

(Rudnicki and Rice 2006) by contrast in permeablhty, k,
and storage coefficient ﬁsmr



Permeability contrast induces preferred rupture direction




Dynamic plane-strain poroelastic rupture: snapshots in time

pore pressure change shear stress change
z (km) x (km)
20 100 10 20 20 -10 0 10 20,
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BIEM from Dunham & Rice (2008)

Here, contrast in permeability leads to rupture direction preference.
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Accounting for plastic deformation near slip surface

May increase permeability k by order(s) of magnitude:
e.g., Mitchell and Faulkner (2008): triaxial tests w/ variable confinement:



Accounting for plastic deformation near slip surface

May increase permeability k by order(s) of magnitude:
e.g., Mitchell and Faulkner (2008): triaxial tests w/ variable confinement:
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Accounting for plastic deformation near slip surface

May increase permeability k by order(s) of magnitude:
e.g., Mitchell and Faulkner (2008): triaxial tests w/ variable confinement:

Decreases undrained pore pressure increments:
dp, = — Bdo,,/3 — effects of plastic dilatancy (53)



Accounting for plastic deformation near slip surface

May increase permeability k by order(s) of magnitude:
e.g., Mitchell and Faulkner (2008): triaxial tests w/ variable confinement:

Decreases undrained pore pressure increments:
dp, = — Bdo,,/3 — effects of plastic dilatancy (53)

More compressible deformation increases storage coefficient up to threefold



Accounting for plastic deformation near slip surface

May increase permeability k by order(s) of magnitude:
e.g., Mitchell and Faulkner (2008): triaxial tests w/ variable confinement:

Decreases undrained pore pressure increments:
dp, = — Bdo,,/3 — effects of plastic dilatancy (53)

More compressible deformation increases storage coefficient up to threefold

With simplifications, find similarity to poroelastic case
k(t)

ahy (t ) Viesca & Rice (2009, proceedings in press)

n stor

Next, approximate surface pore pressure accounting for some of the above
(here neglect evolution of k)

using weighting similar to poroelastic case: ~ dpg = §+dp:[ +¢ dp,



Does plastic deformation near the PSS affect rupture dynamics?

Ar(xr +) (MPa)

x (km) x (km)
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0 0.5 > 1

Aps incl.

Poroelastic directivity preserved



Conclusions

Location of plastic straining depends on angle, ¥, of most
compressive principal pre-stress:

— For ¥ < 10°, plastic strain on compressional side
— For W > 45°, plastic strain on extensional side

Undrained pore fluid response: Ap =—- B Ao, /3
— Increase plastic strain on compressional side
— decrease plastic strain on extensional side

Undrained plastic dilatancy: induces suction, decreases
extent of plasticity

For completely undrained deformation, fluid saturation limits
localization.

Poroelastic deformation can change fault surface pore
pressure and propagation direction.

Considering near-fault plastic deformation: poroelastic
directivity is preserved.



