@)
;
g

Adaptive mesh refinement:
Theory, practice, and
applications in geodynamics

Woltfgang Bangerth

Department of Mathematics
Texas A&M University

Supported by: NSF, DHS, DoE, Sloan Foundation, CIG

Adaptivity modifies meshes as necessary

YIIIIIII T

e Solve on a rather coarse grid
e Compute an error criterion

e If error < tolerance, then stop

e (Otherwise refine mesh

e Solve again on finer grid

Advantage: We can use meshes adapted to the solution and/or what
we are interested in

Disadvantage: We have to solve more than once, and we need more
sophisticated algorithms

@)
;
g

Questions about adaptivity

YIIIIIS

Will we gain anything? This depends on

- whether we need meshes fitted to geometric features
- whether we need fully adapted time varying meshes
- the type of the equation

 How can we generate adaptive meshes?
- mesh generators
- adaptive mesh refinement using error estimators and indicators

How to use them in our codes?
- What do we need for existing codes?
- What do we need for new codes?

A few examples

@)
;
g

Adaptivity is good for geodynamics!

LLLLL

» Adaptive meshes promise to reach the same accuracy with
(orders of magnitude) less effort

e Can focus degrees of freedom where the solution shows
significant variation, achieving resolution otherwise impossible

e Avoid generation of fine meshes by generating them as
necessary from coarse meshes

@)
;
g

Adaptivity is good if and only if
‘“the action is localized”

Fortunately, that's frequently the case in geodynamics
(e.g. stress at fault tips/plate boundaries)!

Adaptivity is good for geodynamics!

LR

Positive example: Flow in domains with corners or separation

5, Mises

Nothing going on!

O Singularity!
| \.
| \
\

% C f ,é i B __l: —r =

z 8 (Courtesy o | : -

»| Ylonavan Dinther,
ETH Zurich) N
.T.:-"'..IIE.nl[a.lI!'rler:t FUL 0.5, FLC 0.3, FUC 0.2 1
I ; II'-' - 15 E 4] 45 L]

X cemp. Trench [km)

www.dealli.org

L L L L L L LSRR

Adaptivity is good for geodynamics!

YIS IIIIIIIIIIIII o

SUNNNNRRNNNNN

A

Positive example: Viscoelastic deformation

Nothing going on!

Singularity!

(From Aagard et al.: Pylith manual version 1.4.)

I IIIYIYIIIII s~

Adaptivity is good for geodynamics!

Positive example: Viscoelastic deformation

Y (km)

00

(From Aagard et al.: Pylith manual version 1.4.)

9 Nothing going on!
: o

O. 2 k) Singularity!
| \
| \

%

u X (km)
% Displacement (m) 240
0.0 0.1 0.2 0.3 0.4 0.5

www.dealli.org

L L L L L L L LA LA

Adaptivity is good for geodynamics!

YIS SIS

Positive example: Elastoplastic deformation

Nothing going on!

Singularity!
Plastic Strain
2 50e-01
1 882-01
|, 25a.01
6.25a-02

0.00e+00

(From Choi et al.: SNAC manual version 1.1.)

VY IO IYIYIYIIIIIII 7~

SUNNNNRRNNNNN

R

Adaptivity is also sometimes bad in geodynamics!

ORI evss i

Counterexample: Geodynamo with its global turbulence and
small-scale features

Adaptivity is also sometimes bad in geodynamics!

Counterexample: Geodynamo with its global turbulence and
small-scale features

www.dealll.org

(From Olson et al.: MAG manual version 1.0.2.)

@)
;
g

In theory, adaptivity is hard!

In order to use adaptivity you need:

e Software that can deal with meshes that
change over time

A criterion that can tell for every cell:
- whether we want to refine it,
- whether we want to coarsen it
- whether we want to leave it alone

 This 1s typically done through error estimators:

- calculate/estimate how big the error 1s
for each cell

- refine those cells with the largest errors

- coarsen those with the smallest

LLLLL

aEzEs:

e

TTTIIIT _\
B e

m=i
+14
+

HeEEEE :
RRREEES |unBEEIHHHRRGI e

L o

In practice it's a lot simpler!

In order to use adaptivity you need:

/Use this!

@)
;
g

In practice it's a lot simpler!

YIIIIIIIISS S

In order to use adaptivity you need:

Use deal.II!

| Py

Cell with small error:
Smooth fct. well resolved

But in practice, this works just fine for almost

all applications: w
ng = diam(K) [, |jump(Vu,) ds T

Cell with big error:
Rough fct. badly resolved

@)
;
g

In practice it's a lot simpler!

YIIIIIIIISS S

In order to use adaptivity you need:

* An alternative 1s to re-generate the mesh every time using Cubit/
LaGrit/etc with a spatially variable mesh density.

This loses a lot of the advantages of adaptivity, though.

@)
;
g

I want to use adaptivity in my code!

YIIIIIS

What to do with existing codes:
» Converting existing codes 1s hard because changes in data
structures and algorithms are so pervasive:
- mesh data structures
- finite elements/finite difference stencils
- handling of hanging node constraints
- linear solvers/preconditioners
- top-level logic

[t may be simpler to write a new code from scratch

e Rewrite may be less painful than you think:
- experience exists from previous codes (e.g.: what
discretization, which solvers work, and which don't)
- libraries exist that support adaptive finite elements

@)
;
g

Available resources for new programs

YIIIIIS

e PETSc (written 1n C):
- everything for sequential and parallel linear algebra
- direct and iterative solvers, algebraic multigrid
- a bunch of other stuff

e Trilinos (written in C++):
- everything for sequential and parallel linear algebra
- direct and 1iterative solvers, algebraic multigrid
- nonlinear solvers, automatic differentiation, optimization, ...

e deal Il (written in C++):
- everything related to meshes, discretizations, etc
- everything for sequential linear algebra
- interfaces to PETSc, Trilinos, METIS, UMFPACK, ...
- huge amount of documentation
- tutorial programs of realistic complexity

@)
;
g

The deal.Il library

deal.ll is a finite element software library:

e Provides support for adaptive meshes in 1d, 2d, and 3d
through a unified interface

e Has standard refinement indicators built in

e Provides a variety of different finite element types
(continuous, DG, mixed, Raviart-Thomas, Nedelec, ...)

@)
;
g

e Low and high order elements
 Full support for multi-component problems
e Has its own sub-library for dense + sparse linear algebra

 But also comes with interfaces to PETSC, Trilinos,
UMFPACK

@)
;
g

The deal.Il library

Supports SMP + cluster systems
Interfaces to all major graphics programs

Fairly widely distributed in the finite element/adaptivity
community:

- 200-300 downloads per month

- 1000+ hits on homepage per month

- 25-30 publications per year based on deal.Il

Supports a wide variety of applications in all sciences
Presently over 450,000 lines of C++ code

More than 5000 pages of documentation

Open Source, active development

Professional software methodology (testing,
documentation, etc)

Examples of existing tutorial applications

LR

Currently available and underway tutorial programs:

There are currently 34 tutorial programs that explain the use of the
library 1n detail, starting from very simple to quite complex
applications

For flow problems:
. stationary Darcy solver (step-20)
. two-phase time dependent Darcy tlow (step-21)
. Stokes solver (step-22)
. Boussinesq solver (step-31)
. parallel Boussinesq solver (step-32, almost finished)
. Euler equations (step-33)
. potential flow via boundary elements (step-34, almost finished)
. projection scheme Navier-Stokes solver (step-35, coming)
. 4 more programs from geophysical flow coming till 9/2009

@)
;
g

Examples of existing tutorial applications

YIIIIIS

Currently available and underway tutorial programs:

For elasticity:
. 2d/3d linear elasticity (step-8, step-17)
. 3d quasistatic (nonlinear) time dependent elasticity (step-18)

Other tutorial programs solve wave equations, soliton equations,
neutron transport...

Tutorials are extensively documented pieces of code

We encourage contribution of more codes and are quite willing to
work with authors!

@)
;
g

Examples of existing tutorial applications

YIIIIIS

deal.Il's step-21 tutorial program:
A solver for time dependent two-phase flow (340 lines of code)

@)
;
g

(L1, Bangerth)

Examples of existing tutorial applications

L

deal.Il's step-22 tutorial program:
An adaptive solver for the Stokes equations (210 lines of code)

<

@)
;
g

(Kronbichler, Bangerth)

Examples of existing tutorial applications

LI

deal.Il's step-22 tutorial program:
An adaptive solver for the Stokes equations (210 lines of code)

-.-E e e gty o oo T o L :__-: v

et

www.dealii.org

(Kronbichler, Bangerth)

@)
;
g

Examples of existing tutorial applications

deal.Il's step-22 tutorial program:
An adaptive solver for the Stokes equations (210 lines of code)

Wiy

Vo

(Kronbichler, Bangerth)

LI

Examples of existing tutorial applications

YIIIIIS

deal.Il's step-22 tutorial program:
An adaptive solver for the Stokes equations (210 lines of code)

Code 1s an extensively documented testbed for numerical methods:

e Uses Q2/Q1 (Taylor-Hood) elements, but Q1/Q1+stabilization takes
only changing ~20 lines of code

A B\|U|_[F
BT o/\P] |0

e Compares solving using

- the pressure Schur complement s=p" A ' with CG

Al 0

- GMRES + block preconditioner -

using Trilinos'

algebraic multigrid implementation for the Laplace block

@)
;
g

Examples of existing tutorial applications

IIIIIIIYS

deal.Il's step-31 tutorial program:
An adaptive solver for the Boussinesq equations (530 lines of code)

@)
g
g

(Kronbichler, Bangerth)

Examples of existing tutorial applications

LI

deal.Il's step-31 tutorial program:
An adaptive solver for the Boussinesq equations (530 lines of code)

@)
;
g

(Kronbichler, Bangerth)

@)
;
g

Examples of existing tutorial applications

YIIIIIS

deal.Il's step-31 tutorial program:
An adaptive solver for the Boussinesq equations (530 lines of code)

Testbed for numerical methods for thermal convection:

« GMRES with block triangular preconditioners, Trilinos' ML as
inner preconditioner on the form
(Vu,Vv) + constraints from boundary conditions

e IMPES-Ilike scheme to decouple Stokes and advection
e Adaptive time step BDF-2 for time discretization

e Nonlinear artificial viscosity to stabilize transport:

%+u-VT—(K+V)A T=q

v =C h;min <C2||RK||>

Examples of existing tutorial applications

L

deal.Il's step-8/step-17 tutorial program:

Adaptive sequential and parallel solvers for the elasticity equations
(150 lines of code)

N ‘: T

.i_ﬁ

..__'"L L
]
|l'l,

i F*;r

@)
;
g

Examples of existing tutorial applications

LI

deal.Il's step-18 tutorial program:

A parallel solver for quasi-static time dependent elasticity
(350 lines of code)

www.dealli.org

@)
;
g

A concrete example: the essence of step-4

IIIIIIIYS

Triangulation<2> triangulation;
FE Q<2> fe(1);
DoFHandler<2> dof handler(triangulation);

SparsityPattern ~ sparsity pattern;
SparseMatrix<double> system matrix;

Vector<double> solution;
Vector<double> system rhs;

int main () {
GridGenerator::hyper cube (triangulation, -1, 1);
triangulation.refine global (4);

dof handler.distribute_dofs (fe);

sparsity pattern.reinit (dof handler.n dofs(), dof handler.n dofs(),

dof handler.max couplings between dofs());
DoFTools::make sparsity pattern (dof handler, sparsity pattern);
sparsity pattern.compress();

system matrix.reinit (sparsity pattern);

@)
g
g

A concrete example: the essence of step-4

LTI,

QGauss<2> quadrature formula(2);
FEValues<2> fe values (fe, quadrature formula,
update values |update gradients | update JxW values);

FullMatrix<double> cell matrix (fe.dofs per cell, fe.dofs per cell);
Vector<double> cell rhs (fe.dofs per cell);

std::vector<unsigned int> local dof indices (fe.dofs per cell);

DoFHandler<2>::active cell iterator cell = dof handler.begin_active(),
endc = dof handler.end();
for (; celll=endc; ++cell) {
fe values.reinit (cell);
cell matrix = 0;
cell rhs =0;

for (unsigned int q point=0; q point<n q points; ++q point)
for (unsigned int 1=0; i<dofs_per cell; ++1) {
for (unsigned int j=0; j<dofs_per cell; +1+j)
cell matrix(1,)) += (fe _values.shape grad (1, q point) *
fe values.shape grad (j, q point) *
fe values.JxW (q_point));

A concrete example: the essence of step-4

y LI

cell rhs(i1) += (fe_values.shape value (1, g point) *
1.0 *
fe values.JxW (q_point));

b

cell->distribute local to global (cell matrix, system_ matrix);
cell->distribute local to global (cell rhs, system_rhs);

)

std::map<unsigned int,double> boundary values;
VectorTools::interpolate boundary values (dof handler,
0,
ZeroFunction<2>(),
boundary values);
MatrixTools::apply boundary values (boundary values,
system_matrix,
solution,
system_rhs);

@)
;
g

@)
g
g

A concrete example: the essence of step-4

LTI,

SolverControl solver control (1000, 1e-12);

SolverCG<> cg (solver_control);

cg.solve (system matrix, solution, system rhs,
Preconditionldentity());

DataOut<2> data out;

data out.attach dof handler (dof handler);
data out.add data wvector (solution, "solution");
data_out.build patches ();

std::ofstream output ("solution.vtk");
data_out.write vtk (output);

)

New stuff in step-6:

Adding hanging nodes to this program takes 6 more lines,
refining the mesh adaptively around 10.

I want to write a deal.ll application!

What does it take to write an
application based on deal.II?

@)
;
g

I want to write a deal.ll application!

YIIIIIS

In the simplest case, writing new applications is trivial:

 If the new method 1s a variant of one that 1s already used 1n existing
tutorial programs, then the latter can easily be modified.

 Advantages:
. Quick startup: A student can start from a working, well-tested
program

. Graphical proof of correctness 1s available from the start and
provides extra motivation

. Possible errors can only be in the most recently introduced new
codes, not “‘everywhere”

e Almost all existing applications are based on one tutorial program
or another.

@)
;
g

e Tutorial programs are relatively small and very well documented

I want to write a deal.ll application!

YIIIIIII T

In more complex cases:
» Applications can be written from scratch

e deal.ll 1s organized as a library of components that can be combined
at will, without an imposition of top-level program structures

e deal.Il's 450,000 lines of code provide high-level tools, data
structures, and algorithms for most any purpose you can think of

 New codes basically only have to implement the things that are
specific to this application

@)
;
g

I want to write a deal.ll application!

LI

Q: What does it take to write new applications?

A: Not a whole lot, actually!

And 1f you try:

. an active developer community will be at
your side to assist in case of questions

. we will be happy to help you get the code
into shape for inclusion into deal.Il (and give
proper credit — this could count as a
publication) so that others can use it as well!

. we are working on other venues for citable
publishing of codes based on deal.Il

@)
;
g

Conclusions

L LT,

e Programs for nontrivial applications exist and are freely available

e Students and faculty can use these as starting points for their own
research

www.dealli.org

e The threshold for new applications is not very high

 We are quite willing to help with questions & answers!

The deal.Il library

Visit the deal Il library:

www.dealii.org

http://www.dealii.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

