
2009 Numerical Modeling of Crustal
Deformation and Earthquake Faulting

Workshop - Golden, CO
June 22-26

Introduction to CUBIT
A quick tutorial and some simple examples

Why use CUBIT?

• Easy connection to Pylith
• Graphical interface and/or scripting (including python)
• Variety of meshing types and approaches

• Platforms
– Linux RedHat 9.0 32- and 64-bit
– Windows 2000/XP
– Mac OS X

• http://malla.sandia.gov/cubit/index.html
– $300, downloads and updates/support for 5 years

• Acknowledgements/other resources

– Last year - Emanuele Casarotti
• now at Istituto Nazionale di Geofisica e Vulcanologia

– Online CUBIT info
• http://cubit.sandia.gov
• majordomo@scico.sandia.gov
• Documentation, tutorials (online and ppt w/ auxiliary files)

– Other NMCDEF participants

Examples from today:

 -> Short-Term Crustal Dynamics
 ->Work Area
 ->Benchmarks
 -> CUBIT examples

Pylith Workflow

Pylith

Paraview/matlab/etc

CUBIT
GUI or command line

Use GUI

Generate input file
(by hand, from GUI, etc

Geological info
• low (toy model)
• high (topo,
digitized surfaces,
etc)

Outline

• Our specific application / why we like CUBIT

• Walk-through interface features
– Types of entities and meshing
– How to built things
– How to find help

• Examples
– Mostly simple, but a couple more complicated ones from

Emanuel Casarotti (building a subduction zone, loading
topography)

Our Implementations

Need: scriptable, flexible meshing approach requiring
minimal interaction for large numbers of runs with slightly
different conditions

• Green’s functions for fault slip inversions
– Requires BIG mesh or semi-autonomous generation of

meshes for each fault patch

• Assessing effects of crustal rigidity variations
– Need to model faults with range of orientations,

depths, etc.
– Must worry about features introduced by inadequate

meshing

Sensitivity test: Strike-slip

Can’t fit asymmetric deformation with vertical fault

Cross-Fault Contrast Tests

• Retrieve input geometry
when contrast=0

• Sensitivity depends on
viewing and earthquake
geometry

Examples: Sensitivity Tests

• Goal: For generic settings,
what is inversion sensitivity?

– Generate synthetic data
using cross-fault contrast
(slow)

– Invert using elastic half
space (fast)

– Assess potential bias:
Inferred fault dip

FE calculations using Pylith, mesh with CUBIT

Fault

Fault

Using CUBIT

1. Creating the geometry (curve-surface-volume)

2. Setting the mesh interval sizes and meshing
schemes

3. Meshing the geometry

4. Specifying the boundary conditions

5. Exporting the mesh

Geometry Entities in CUBIT

Mesh Entities, which approximate geometry entities of same
dimension

Vertex Curve Surface BodyVolume

Node Edge Face HexHex

CUBIT Meshes Vertices First, Then Curves, Then Surfaces, Then Volumes
(Advancing Front Paradigm)

Tri Tet

Entity Types in CUBIT

 Toolbar
CommandsDrop Down Menu Commands

Graphics
Window Command

Panel

Command Line

Entity Tree

Properties
Page

The Command Panel

Press an Icon to enter a
new mode

Operation Mode Buttons

- Geometry: Create, modify, cleanup…

- Mesh: Intervals, schemes, smoothing…

- Properties: Nodesets, sidesets, blocks

- Analysis Setup: Export mesh

- Post Processing: Customizable shortcut

Each Button press takes you to a lower level

Operation Mode Buttons

Typical Dialog Layout

• Drop Down Menu
– Select the type of operation

(sub-action).
• ID Input Field

– You can type IDs here, or
fill the box by picking

• Command Options Input
• Execute Button

– Click button or hit alt-a to
execute the command.

Display Tool Bar

perspective
on/off

Zoom in,
out, and fit

redisplayCheck point
save/undo

Display modes Toggle Scale

Chose rubber
band select
mode

Selecting Surfaces in the
Graphics Window

Move cursor to a surface.
The bounding curves of
the surface are
highlighted and cursor
indicates surface type.

Selecting Curves in the
Graphics Window

Move the cursor to a
curve. The curve is
highlighted and the cursor
indicates curve type.

Selecting Vertices in the
Graphics Window

Move the cursor to a
vertex. The vertex is
highlighted and the cursor
indicates vertex type.

Entity Selection Filter

• Toolbar buttons toggle entity types that will be included in
pre-selection

• Default
– Volume
– Surface
– Curve
– Vertex

• Active ID Input field “hijacks” pre-selection so that only the
expected entity type is selectable

Geometry Primitive Creation

• Many analytic geometry
types may be created
in CUBIT

• Useful when creating
geometry from scratch,
and in decomposition

Create Button

• Geometry Primitives are
accessed with the Create
button

• Seven primitive types are
currently available

• For command line syntax:
– CUBIT> help create

Geometry Booleans

• Geometry Booleans define the shape of a Body
based on overlapping regions
– Subtract

• Remove regions of overlap
– Intersect

• Delete all except regions of overlap
– Unite

• Combine all regions

Subtract

• Removes regions that overlap

Before After
CUBIT> subtract body 2 from 1

Intersect

• Removes regions that don’t overlap

Before After
CUBIT> intersect body 1 2

Unite

• Combines all regions into one Body

Before After
CUBIT> unite body 1 2

Run geom_test

Importing Geometry

• Previously created geometry may be imported
from CAD files
– ACIS
– STEP
– IGES
– Pro /E (limited availability)

• Geometry translators may be used to import
unsupported CAD formats
– pro2acis

Note: can also use “brute force”
and build nodes, surfaces, then
volumes

Webcutting

• Webcutting slices 1 Body into 2 Bodies
• Many methods to determine where to

make the slice
– Plane
– Cylinder
– Extended Surface
– Intersection with “Tool” Body

CUBIT> help webcut
For command line syntax:

Imprinting

• Modifies a Body based on what it touches
• Splits existing Curves and Surfaces at points of

contact
• Imprinting is a necessary step to allow adjacent

Bodies to share common boundaries

Imprinting

Body 1 and 2 Body 1
before imprinting

Body 1
after imprinting

Merging

• Adjacent Surfaces, Curves, and Vertices are
replaced with a single entity

• Merged entities belong to more than one parent
• Merging allows mesh to be shared at common

boundaries
– Otherwise - have two surfaces in the same spot

with different names/mesh

Run subduction example

Geometry - My notes

• Can select multiple entities at once in many ways
– draw volume all with x_coord > 0
– curve all in volume 1 3 5 visibility off

• Use tree view and info panel to find
names/numbers/geometrical information (or python)

• Make sure to:
– “reset” between tests/runs
– Merge/Imprint all entities before meshing!

• Everything done in GUI shows up in command pane and
history - save in journal file to repeat without getting
carpal tunnel

• Bringing in points individually - not a pain if using a journal
file/scripting

Meshing Notes

• Start with mesh node spacing curves and build up to
volumes
– Set mesh spacing, then “scheme”, then apply meshing

• Can build tet or hex meshes

• Usually requires some iteration at first to find what works
best

• Symmetrical volumes - form mesh on one surface and
“sweep” around to rest of volume

Operation Mode Buttons

- Geometry: Create, modify, cleanup…

- Mesh: Intervals, schemes, smoothing…

- Properties: Nodesets, sidesets, blocks

- Analysis Setup: Export mesh

- Post Processing: Customizable shortcut

Sweep

• 2.5d - may twist & turn
Run mesh example

Building Groups for Pylith

• Blocks = materials
• Nodesets = surfaces for boundary conditions

In CUBIT:

block 1 volume foot_inner
block 1 volume 1 to 8
block 1 name "foot_walls"

Building Groups for Pylith

• Blocks = materials
• Nodesets = surfaces for boundary conditions

In CUBIT:

 group "fault" add node in fault_inner
nodeset 10 group fault
nodeset 10 name "fault"

Building Groups for Pylith

• Blocks = materials
• Nodesets = surfaces for boundary conditions

In dislocation.cfg (boundary conditions):

[pylithapp.timedependent.bc.x_neg]
fixed_dof = [0]
label = 12
db.label = Dirichlet BC on -x

Exporting to Pylith

• Export mesh with:
export mesh "out.exo" dimension 3

• In pylithapp.cfg

reader = pylith.meshio.MeshIOCubit

[pylithapp.mesh_generator.reader]
filename = out.exo

Summary/putting all together

• Bring in points from faults, topo, etc

• Build bodies that describe desired scneario

• Mesh (other refinement tools?)

• Define all sets of nodes (boundary conditions)
and tets/hex (materials)

• Export to “myname”.exo

• Use in Pylith

