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Motivation

◮ Effects of non-planarity of
fault surfaces significantly
affect fault mechanics,
e.g. slip nucleation &
cessation, off-fault
deformation

◮ Knowledge of non-planar
geometry is limited

Johnson et al., 2002

Rousseau and Rosakis, 2002
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Motivation

◮ Geometric description:
roughness measures

◮ Past findings: Scale
independence of
roughness (Power &
Tullis, 1987)

◮ Sagy et al. 2006 argue
that roughness
measures are scale
dependent

◮ Inherent to roughness
measurements: spatial
incoherence Sagy et al., 2007
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◮ Modeling efforts generally
assume planar geometry

◮ Wavy fault models
simplify mechanics
(Chester & Chester, 2000)
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Goals

◮ Alternate geometric
description of fault
surfaces

◮ Investigate effects on
sliding mechanics
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Geologic Setting

Adapted from :

Bacon et al., 1997
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Fault zone constituents

Slip surface

Cohesive 
granular

Fragmented 

Andesite

Colluvium

5m



Introduction
Data & Methods
Results
Implications for Fault Mechanics
Modeling approach - 2D BEM
Conclusions

Large scale topography

◮ Erosional features
contained within surface

◮ Elliptical bumps/troughs

Erosional 
feature

E
ll

ip
ti

ca
l b

u
m

p

S
lip

 d
ire

c
tio

n



Introduction
Data & Methods
Results
Implications for Fault Mechanics
Modeling approach - 2D BEM
Conclusions

Data: from A. Sagy & E.E. Brodsky
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Data Collection

◮ Ground-based LiDAR

◮ Point clouds merged

◮ ∼11 million data points

◮ 1cm resolution

◮ 3mm precision
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Data

◮ Interpolate onto regular
grid

◮ Remove noise

◮ Remove different
frequencies: larger
wavelength topography

◮ Moving average filter
(Hamming window)
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Differential Geometry

◮ Quantify geometric
properties completely and
uniquely

◮ Two fundamental forms:

First fundamental form:

I = dc · dc

dc =
∂s

∂u
du +

∂s

∂v
dv

Second fundamental form:

II = −dN · dc

dN =
∂N

∂u
du +

∂N

∂v
dv and

N =

[

∂s

∂u
×

∂s

∂v

]

/

∣

∣

∣

∣

[

∂s

∂u
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∂s

∂v

]
∣

∣

∣

∣

Pollard et al., 2004
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Differential Geometry

◮ Shape operator:

L = I
−1

II

◮ Principle normal
curvatures, κ1 & κ2

◮ Useful curvature
measures:
Gauß, κG = κ1κ2,
mean normal,
κM = 1
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Results: low-pass r=0.02m
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Results: low-pass r=0.02m
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Results: low-pass r=0.02m
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Results: low-pass r=0.1m
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Results: low-pass r=0.1m
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Results: low-pass r=0.1m
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Results: low-pass r=0.5m
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Summary of intermediate results
◮ Longer wavelengths: ’ideal’

geometry

◮ Medium / short wavelengths:
slip-parallel undulations

◮ Elliptical bumps: are also
slip-parallel undulations, but
with larger a/λ

◮ D.G. quantification highlights
these differences

◮ Scale dependent!

◮ What are the important (length)
scales?
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Implications for fault mechanics

◮ Resolve tractions on
filtered fault surface

◮ Solve frictionless 3D
heuristic fault models

◮ Solve the (static)
frictional sliding problem
(2D)
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Resolved Coulomb tractions (low-pass r=0.02m)
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Resolved Coulomb tractions (low-pass r=0.5m)
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Heuristic fault models
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von-Mises stress & principal stress orientations
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Modeling 2D frictional faults using boundary element

methods

◮ Modeling efforts generally
oversimplify the geometry

◮ Stick with non-planar
geometry and treat
boundary conditions
somewhat differently

Chester and Chester, 2000
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How to model finite faults (statically)?
◮ Governing equations:

σij ,j = Fi ∈ Ω

◮ Discretization

◮ Faults: displacement
discontinuities

Di = Ui(x , 0−) − Ui(x , 0+)

◮ Boundary conditions:

{

Ts

Tn

}

=

[

Ass Asn

Ans Ann

]{

Ds

Dn

}

Crouch and Starfield, 1983
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Friction Implementation in BEM: Complementarity

◮ Normal displ. & traction

Tn ≥ 0

Dn ≥ 0

TnDn = 0

◮ Shear slip & traction

if |Ts | ≥ 0, µTn − Ts ≥ 0,

then Ds = 0

if |Ts | − µTn = 0,

then Ds 6= 0

Pang et al., 1996; Mutlu and

Pollard, 2008
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Resulting numerical problem: Linear programming

◮ Rearranged algebraic expression
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+ q

◮ Numerical problem to solve:

f (x) = Mx + q

subject to

x ≥ 0, f (x) = 0, xf (x) = 0
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Boundary Element Model
◮ Finite length

fault with
wavy
geometry

◮ Linearly
elastic,
isotropic,
homogeneous

◮ Frictional
contact
µ = .6, no
cohesion

◮ ν = .25, E =
5GPa
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Boundary Element Model

◮ Finite length
fault with
wavy
geometry

◮ Shear &
normal
tractions
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Off-fault deformation, onset of plastic yielding

Position along sinussoidal fault
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Conclusions
◮ Heterogeneous distribution of

tractions

◮ Heterogeneous off-fault
deformation

◮ Dilation happens under many
loading conditions

◮ Non-constant friction law
implementation underway (2D)

◮ Implementation in 3D pending
(iterative solver for friction
works)
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Conclusions
◮ D.G. quantification: spatial

coherence, basic shapes

◮ Basic shapes affect mechanics
of faulting

◮ Resolved tractions vary on the
order of MPa

◮ Improved (static) modeling
provides interesting results

◮ Quasi-static solutions with
non-constant friction are likely
to provide more insight into
location of slip initiation etc.
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Questions:

◮ Locked vs. creeping regions:
geometric differences
(resolvable)?

◮ Fluid flow along faults after slip

◮ Does off-fault deformation yield
wavy surfaces?
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