
default

Overview of PyLith

Charles Williams
Brad Aagaard

Matthew Knepley

June 18, 2012

default

What types of problems can we solve with PyLith?
Elasticity problems where geometry does not change significantly

Quasistatic modeling associated with earthquakes

Strain accumulation associated with interseismic deformation
What is the stressing rate on faults X and Y?
Where is strain accumulating in the crust?

Coseismic stress changes and fault slip
What was the slip distribution in earthquake A?
How did earthquake A change the stresses on faults X and Y?

Postseismic relaxation of the crust
What rheology is consistent with observed postseismic
deformation?
Can aseismic creep or afterslip explain the deformation?

PyLith Problem Types

default

What types of problems can we solve with PyLith?
Elasticity problems where geometry does not change significantly

Dynamic modeling associated with earthquakes

Modeling of strong ground motions
Forecasting the amplitude and spatial variation in ground
motion for scenario earthquakes

Coseismic stress changes and fault slip
How did earthquake A change the stresses on faults X and Y?

Earthquake rupture behavior
What fault constitutive models/parameters are consistent with
the observed rupture propagation in earthquake A?

PyLith Problem Types

default

What types of problems can we solve with PyLith?
Elasticity problems where geometry does not change significantly

Volcanic deformation associated with magma chambers and/or
dikes

Inflation
What is the geometry of the magma chamber?
What is the potential for an eruption?

Eruption
Where is the deformation occurring?
What is the ongoing potential for an eruption?

Dike intrusions
What the geometry of the intrusion?

PyLith Problem Types

default

PyLith Background

Developers
Brad Aagaard (USGS, lead developer))
Charles Williams (GNS Science, formerly at RPI)
Matthew Knepley (Univ. of Chicago, formerly at ANL)

Combined dynamic modeling capabilities of EqSim (Aagaard)
with the quasistatic modeling capabilities of Tecton (Williams)
Take advantage of recently-developed Sieve package in
PETSc to handle mesh topology and related problems
(Knepley)
Use modern software engineering (modular design, testing,
documentation, distribution) to develop an open-source,
community code

PyLith Background

default

PyLith Background
Overview of workflow for typical research problem

Geologic
Structure

Mesh
Generation

Physics
Code

Visualization

Gocad

Earth Vision

CUBIT

LaGriT

TetGen

Gmsh

PyLith

Relax

GeoFEST

Abaqus

ParaView

Visit

Matlab

Matplotlib

GMT

CIG

Open Source

Free

Commercial

Available

Planned

PyLith Background

default

Governing Equations

Elasticity equation

ρ
∂2~u
∂t2 −

~f −∇ · σ = ~0 in V , (1)

σ · ~n = ~T on ST , (2)
~u = ~u0 on Su, (3)

~d − (~u+ − ~u−) = ~0 on Sf . (4)

Multiply by weighting function and integrate over the volume,∫
V

~φ ·
(
∇ · σ +~f − ρ∂

2~u
∂t2

)
dV = 0. (5)

After some algebra,

−
∫

V
∇~φ : σ dV +

∫
ST

~φ ·~T dS+

∫
V

~φ ·~f dV−
∫

V

~φ ·ρ∂
2~u
∂t2 dV = 0 (6)

PyLith Governing Equations

default

Governing Equations

Writing the trial and weighting functions in terms of basis (shape)
functions,

~u = Nn · ~un, (7)
~φ = Nm · ~am. (8)

After some algebra, we obtain

−
∫

V
∇N

T
m · σ dV +

∫
ST

N
T
m · ~T dS

+

∫
V

N
T
m ·~f dV −

∫
V
ρN

T
m · Nn ·

∂2~un

∂t2 dV = ~0. (9)

PyLith Governing Equations

default

Governing Equations

Using numerical quadrature we convert the integrals to sums over
the cells and quadrature points

−
∑

vol cells

∑
quad pts

∇N
T
m · σwq|Jcell|+

∑
surf cells

∑
quad pts

N
T
m · ~Twq|Jcell|

+
∑

vol cells

∑
quad pts

N
T
m ·~fwq|Jcell|

−
∑

vol cells

∑
quad pts

ρN
T
m · Nn ·

∂2~un

∂t2 wq|Jcell| = ~0 (10)

PyLith Governing Equations

default

Quasistatic Solution
Neglect inertial terms

Form system of algebraic equations

A(t)~u(t) = ~b(t) (11)

where

A(t) =
∑

vol cells

∑
quad pts

1
4
(∇T +∇)NT

m · C · (∇+∇T)Nnwq|Jcell| (12)

~b(t) =
∑

surf cells

∑
quad pts

N
T
m · ~Twq|Jcell|+

∑
vol cells

∑
quad pts

N
T
m ·~fwq|Jcell|

(13)

and solve for ~u(t).

PyLith Governing Equations

default

Implementation: Fault Interfaces
Use cohesive cells to control fault behavior

(a) Original mesh

fault vertex

n

(b) Add colocated
vertices

Sf− Sf+

Original fault vertex
(negative side)

Add Lagrange
multiplier vertex

Add vertex on
positive side

(c) Update cells with
fault faces

-

-

+

+

Cell on
negative
side

Cell on
positive
side

(d) Classify cells and
update remaining
cells

-

-

+

+

-

-

-

-

+

+

+

+

PyLith Fault Implementation

default

Fault Slip Implementation
Use Lagrange multipliers to specify slip

System without cohesive cells
Conventional finite-element elasticity formulation

A~u = ~b

Fault slip associated with relative displacements across fault

C~u = ~d

System with cohesive cells(
A C

T

C 0

)(
~u
~l

)
=

(
~b
~d

)
Lagrange multipliers are tractions associated with fault slip
Prescribed (kinematic) slip
Specify fault slip (~d) and solve for Lagrange multipliers (~l)
Spontaneous (dynamic) slip
Adjust fault slip to be compatible with fault constitutive model

PyLith Fault Implementation

default

Implementing Fault Slip with Lagrange multipliers

Advantages
Fault implementation is local to cohesive cell
Solution includes tractions generating slip (Lagrange
multipliers)
Retains block structure of matrix, including symmetry
Offsets in mesh mimic slip on natural faults

Disadvantages
Cohesive cells require adjusting topology of finite-element
mesh

PyLith Fault Implementation

default

Ingredients for Running PyLith

Simulation parameters
Finite-element mesh

Mesh exported from LaGriT
Mesh exported from CUBIT
Mesh constructed by hand (PyLith mesh ASCII format)

Spatial databases for physical properties, boundary
conditions, and rupture parameters

SCEC CVM-H or USGS Bay Area Velocity model
Simple ASCII files

PyLith Running PyLith

default

Spatial Databases
User-specified field/value in space

Examples
Uniform value for Dirichlet (0-D)
Piecewise linear variation in tractions for Neumann BC (1-D)
SCEC CVM-H seismic velocity model (3-D)

Generally independent of discretization for problem
Available spatial databases

UniformDB Optimized for uniform value
SimpleDB Simple ASCII files (0-D, 1-D, 2-D, or 3-D)
SCECCVMH SCEC CVM-H seismic velocity model v5.3
ZeroDispDB Special case of UniformDB

PyLith Running PyLith

default

Features in PyLith 1.7
Enhancements and new features in red

Time integration schemes and elasticity formulations
Implicit for quasistatic problems (neglect inertial terms)

Infinitesimal strains
Small strains
Optional elastic prestep

Explicit for dynamic problems
Infinitesimal strains
Small strains
Numerical damping via viscosity

Bulk constitutive models
Elastic model (1-D, 2-D, and 3-D)
Linear Maxwell viscoelastic models (2-D and 3-D)
Generalized Maxwell viscoelastic models (2-D and 3-D)
Power-law viscoelastic model (2-D and 3-D)
Drucker-Prager elastoplastic model (2-D and 3-D)

PyLith Features

default

Features in PyLith 1.7 (cont.)
Enhancements and new features in red

Boundary and interface conditions
Time-dependent Dirichlet boundary conditions
Time-dependent Neumann (traction) boundary conditions
Absorbing boundary conditions
Kinematic (prescribed slip) fault interfaces w/multiple ruptures
Dynamic (friction) fault interfaces
Time-dependent point forces
Gravitational body forces
Spatial and temporal traction variations for spontaneous
rupture

Fault constitutive models
Static friction
Linear slip-weakening
Linear time-weakening
Dieterich-Ruina rate and state friction w/ageing law

PyLith Features

default

Features in PyLith 1.7 (cont.)
Enhancements and new features in red

Automatic and user-controlled time stepping
Ability to specify initial stress/strain state
Importing meshes

LaGriT: GMV/Pset
CUBIT: Exodus II
ASCII: PyLith mesh ASCII format (intended for toy problems
only)

Output: VTK and HDF5 files
Solution over volume
Solution over surface boundary
Solution at user-specified locations
State variables (e.g., stress and strain) for each material
Fault information (e.g., slip and tractions)

User-friendly interface for generating Green’s functions

PyLith Features

default

Features in PyLith 1.7 (cont.)
Enhancements and new features in red

Automatic conversion of units for all parameters
Parallel uniform global refinement
PETSc linear and nonlinear solvers

Custom preconditioner with algebraic multigrid solver
Ability to use PETSc GPU solvers

User-specified start time for simulations

PyLith Features

default

PyLith Development

Long-term priorities (CIG science questions)
Multi-cycle earthquake modeling

Resolve interseismic, coseismic, and postseismic deformation
Elastic/viscoelastic/plastic rheologies
Coseismic slip, afterslip, and creep

Physics of magmatic systems, geothermal systems, and the
cryosphere
Models of crustal deformation associated with surface loads
Efficient computation of 4-D Green’s functions
Scaling to 1000 processors

Short-term priorities
Increase user training using virtual workshops

CIG/SCEC/NASA/NSF workshop: annual → biannual
(June 2012)
Online training: Building PyLith from source, TBD

PyLith Features

default

PyLith Development
Planned Releases

v1.8 (December 2012)
Switch to more efficient Sieve implementation
Better GPU utilization and additional efficiency improvements
Strain hardening/softening for plastic materials
Attenuation for dynamic simulations using a generalized
Maxwell model

v2.0+ (2013-2014)
Coupling of quasistatic and dynamic simulations
Support for incompressible elasticity
Heat and fluid flow coupled to elastic deformation
Higher order FE basis functions
Moment tensor point sources
4-D Green’s functions

PyLith Features

default

Design Philosophy
Modular, extensible, and smart

Code should be flexible and modular
Users should be able to add new features without modifying
code, for example:

Boundary conditions
Bulk constitutive models
Fault constitutive models
Customized spatial databases

Input/output should be user-friendly
Top-level code written in Python (expressive, dynamic typing)
Low-level code written in C++ (modular, fast)

PyLith Architecture

default

PyLith Design: Focus on Geodynamics
Leverage packages developed by computational scientists

PyLith

SievePyre Proj.4 FIAT

PETSc numpy

BLAS/LAPACKMPI boost

PyLith Architecture

default

PyLith as a Hierarchy of Components
Components are the basic building blocks

���������

������

����

���

����������

����������

������������������

����������

��������

PyLith Architecture

default

PyLith as a Hierarchy of Components
PyLith Application and Time-Dependent Problem

���������

����������

����������

����

��������������

�������

�����

�������������

����������

����������

���������

����������

���������

��

����������

�������������

�����������

PyLith Architecture

default

PyLith as a Hierarchy of Components
Fault with kinematic (prescribed slip) earthquake rupture

FaultCohesiveKin

properties

facilities

id

name

up_dir

normal_dir

quadrature

eq_srcs

output

EqKinSrc

properties

facilities

origin_time

slip_function

PyLith Architecture

default

PyLith Application Flow

PyLithApp
main()

mesher.create()

problem.initialize()

problem.run()

TimeDependent (Problem)
initialize()

formulation.initialize()

run()

while (t < tEnd)

dt = formulation.dt()

formulation.prestep(dt)

formulation.step(dt)

formulation.poststep(dt)

Implicit (Formulation)
initialize()

prestep()

set values of constraints

step()

compute residual

solve for disp. incr.

poststep()

update disp. field

write output

PyLith Architecture

default

Unit and Regression Testing
Automatically run more than 1800 tests on multiple platforms whenever code is
checked into the source repository.

Create tests for nearly every function in code during
development

Remove most bugs during initial implementation
Isolate and expose bugs at origin

Create new tests to expose reported bugs
Prevent bugs from reoccurring

Rerun tests whenever code is changed
Code continually improves (permits optimization with quality
control)

Binary packages generated automatically upon successful
completion of tests
Additional full-scale tests are run before releases

PyLith Testing

default

General Numerical Modeling Tips
Start simple and progressively add complexity and increase resolution

Start in 2-D, if possible, and then go to 3-D
Much smaller problems⇒ much faster turnaround
Experiment with meshing, boundary conditions, solvers, etc
Keep in mind how physics differs from 3-D

Start with coarse resolution and then increase resolution
Much smaller problems⇒ much faster turnaround
Experiment with meshing, boundary conditions, solvers, etc.
Increase resolution until solution resolves features of interest

Resolution will depend on spatial scales in BC, initial conditions,
deformation, and geologic structure
Is geometry of domain important? At what resolution?
Displacement field is integral of strains/stresses
Resolving stresses/strains requires fine resolution simulations

Use your intuition and analogous solutions to check your
results!

PyLith Tips

default

Mesh Generation Tips
There is no silver bullet in finite-element mesh generation

Hex/Quad versus Tet/Tri
Hex/Quad are slightly more accurate and faster
Tet/Tri easily handle complex geometry
Easy to vary discretization size with Tet, Tri, and Quad cells
There is no easy answer
For a given accuracy, a finer resolution Tet mesh that varies
the discretization size in a more optimal way might run faster
than a Hex mesh

Check and double-check your mesh
Were there any errors when running the mesher?
Do all of the nodesets and blocks look correct?
Check mesh quality (aspect ratio should be close to 1)

CUBIT
Name objects and use APREPRO or Python for robust scripts
Number of points in spline curves/surfaces has huge affect on
mesh generation runtime

PyLith Tips

default

PyLith Tips

Read the PyLith User Manual
Do not ignore error messages and warnings!
Use an example/benchmark as a starting point
Quasi-static simulations

Start with a static simulation and then add time dependence
Check that the solution converges at every time step

Dynamic simulations
Start with a static simulation
Shortest wavelength seismic waves control cell size

CIG Short-Term Crustal Dynamics mailing list
cig-short@geodynamics.org

Short-Term Crustal Dynamics wiki
http://www.geodynamics.org/cig/community/

workinggroups/short/workarea/pylith-wiki

CIG bug tracking system
http://www.geodynamics.org/roundup

PyLith Tips

default

PyLith Debugging Tools

pylithinfo [--verbose] [PyLith args]

Dumps all parameters with their current values to text file
Command line arguments

--help

--help-components

--help-properties

--petsc.start in debugger (run in xterm)
--nodes=N (to run on N processors on local machine)

Journal info flags turn on writing progress
[pylithapp.journal.info]

timedependent = 1

Turns on/off info for each type of component independently
Examples turn on writing lots of info to stdout using journal
flags

PyLith Tips

default

Getting Started

Read the PyLith User Manual
Work through the examples

Chapter 7 of the PyLith manual
Input files are provided with the PyLith binary
src/pylith/examples

Input files are provided with the PyLith source tarball
src/examples

Modify an example to look like a problem of interest

PyLith Tips

