

Semi-analytic Fourier-domain solver and equivalent body forces for quasi-static relaxation of stress perturbation

> Sylvain Barbot California Institute of Technology

Relax

www.geodynamics.org

Computational Infrastructure for Geodynamics

Relax Examples

Coseismic slip

- Simplest input file
- Complex fault geometry
- Viscoelastic flow
 - Simple nonlinear viscoelastic flow model
 - El Mayor-Cucapah
- Research examples
 - 2010 Mw 7.2 El Mayor-Cucapah earthquake
 - ▶ 1999 Mw 7.6 Chi-Chi earthquake
 - GRACE surface loads in the Himalayas

Coseismic slip - Simplest model

Mesh is uniform and rectangular

```
relax --no-proj-output <<EOF
# SX1,SX2,SX3 (grid size)
256 256 256
# dx1,dx2,dx3 (km),beta (0-0.5),nq 2
0.5 0.5 0.5 0.2 2
...
EOF</pre>
```


list the fault patches

relax < <eof< th=""><th></th><th>x₁(north)</th><th></th></eof<>		x ₁ (north)	
#no slip xs ys	zs length width strike	e dip rake 7 91 -114.7 (x_s, y_s, z_s) x_2 (ease	st)
$\begin{array}{c} 2 & 1.89 & 10.4 & -41.31 \\ 3 & 0.46 & 14.2 & -45.41 \end{array}$	10.0 5.6 4.94 132.7 6 5 3 74 3 53 132 7	7 91 -151.8 7 91 -150 6	
EOF	0.5 5.71 5.55 152.7	$\begin{array}{c} \mathbf{y} = $	

Coseismic slip - Simplest model

EOF

10

0 90

0

```
relax --no-proj-output <<EOF
# SX1,SX2,SX3 (grid size)
256 256 256
# dx1,dx2,dx3 (km),beta (0-0.5),ng (2)
0.5 0.5 0.5 0.2 2
                                                                     computational grid
# origin position & rotation
0 0 0
# observation depths for displacement and for stress
0 5
# output directory (all output written here)
output directory
# lambda (MPa), mu (MPa), gamma (1/km)
3e4 3e4 8.33e-4
                                                                     constitutive parameters
# integration time, time step and scaling
0 -1 1
# number of viscous observation slice
0
                                                                      sources
# number of observation points
0
# number of Coulomb patches
0
# number of prestress interfaces
                                                            # number of events
0
# number of linear viscous interfaces
                                                            # number of shear dislocations
0
# number of power-law viscous interfaces
                                                            # no slip xs ys zs length width strike dip rake
0
                                                               1 1 -10 0 0 10
# number of friction faults
                                                            # number of tensile cracks
0
# number of interseismic loading strike-slip and opening
                                                            # number of dilatation sources
0
                                                            0
0
                                                            # number of surface traction
                                                            0
```

Coseismic slip - Complex fault geometry

Coseismic slip distribution of Fialko (2004). Location: examples/mojave/landers.sh

```
1 1.3475 14.246 -45.439 10.056 5.6 4.94 132.7 91.0 -114.7

2 1.8921 10.446 -41.319 10.056 5.6 4.94 132.7 91.0 -151.8

3 0.46688 14.201 -45.481 6.5269 3.74 3.53 132.7 91.0 -150.6

4 0.38986 11.668 -42.734 6.5269 3.74 3.53 132.7 91.0 -175.6

5 1.3331 9.1346 -39.987 6.5269 3.74 3.53 132.7 91.0 172.8

6 0.20179 14.168 -45.511 4.0058 2.8 2.52 132.7 91.0 157.4

7 0.29966 12.268 -43.45 4.0058 2.8 2.52 132.7 91.0 144.0
```

426 0.0052909 -3.3563 -14.937 0 0.97 0.914 89.3 91.0 90.0

list all the fault patches, filter, modify:

```
# number of coseismic events
# number of shear dislocations
awk 'BEGIN{c=0}{if ($5 > 2 && $5 < 20){c=c+1}}END{print c}' $FLT`
# index slip x1 x2 x3 length width strike dip rake
awk 'BEGIN{c=1}{if ($5 > 2 && $5 < 20){$1=c;print $0;c=c+1}}' $FLT`
# number of tensile cracks
0</pre>
```

Coseismic slip - Complex fault geometry

GMT plots with the postprocessing tool grdmap.sh

grdmap.sh -b -75/50/-75/50 -v 4 -t 25 -p -0.2/0.2/0.002 -u m -e ../../util/ erpatch.sh landers/000

type:

grdmap.sh -h

for more information.

Coseismic slip - Complex fault geometry

Paraview display

Nonlinear viscoelastic flow

nonlinear viscoelastic relaxation following slip on a strike-slip fault Location: examples/tutorials/run2.sh

setup the duration of the simulation

```
# integration time (in years), time step, scaling factor
20 -1 0.5
```

setup the mechanical structure

```
# viscous interfaces are depths where the viscous properties change.
# number of linear viscous interfaces
0
# number of powerlaw viscous interfaces
2
# no depth gammadot0 power cohesion
                5e3 3.0
  1 2.0
                               0.0
      8.0
                5e3 3.0
   2
                               0.0
# ductile zones corresponds to volumes where viscous properties change.
# number of power-law ductile zones
0
```

Nonlinear viscoelastic flow

nonlinear viscoelastic relaxation following slip on a strike-slip fault Location: examples/tutorials/run2.sh

GMT plot of the coseismic deformation

> grdmap.sh -b -3/3/-3/3 -v 0.5 -p -0.05/0.05/0.001 -e ../../util/erpatch.sh output2/000

GMT plot of the postseismic deformation

> grdmap.sh -b -5/5/-5/5 -v 0.01 -p -0.005/0.005/0.0001 -s 0.5 e ../../util/erpatch.sh output2/050-relax

Paraview rendering of the postseismic transient

Relax Research Examples From geological settings to geophysical modeling

Total strain is decomposed in elastic and inelastic strain components

thickness

Setup a mechanical structure with lateral variations in viscous properties

```
# number of linear viscous interfaces
0
# number of powerlaw viscous interfaces
1
# no depth gammadot0 power cohesion
  1
       70
             1 1.0
                               0.0
# number of nonlinear ductile zones
2
# no dgammadot0 x1 x2 x3 length width thickness strike dip
             1 90 - 20 40
                            400
                                   30
                                            140
  1
                                                   147
                                                        90
             1 90 -20 55 100
                                  15
                                            140
                                                   -33 90
# number of fault creep interface
0
```


file \$OPTS contains a list of stations

```
NAYX 19.5234 -19.1933 -0.023816
NVLX 29.9628 -11.3416 -0.0211503
PTAX 4.29884 -13.5242 1.06037
QUEX 32.4871 5.96725 -0.0162088
YUMX 29.1409 -51.9288 -0.0284696
P796 69.5972 0.98512 0.0101659
```

```
. . .
```

file \$OPTS contains a list of stations

```
. . .
# number of observation points
`grep -v "#" $OPTS | awk -v l=$LEN \
                                                      filter out GPS stations outside
        'function abs(x){return (0>x)?-x:x}
                                                      the computation grid
         BEGIN{i=0}
         {if (abs($2)<1 && abs($3)<1){i=i+1;}}
         END{print i}'`
# no NAME x1 x2 x3
`qrep −v "#" $OPTS | awk −v l=$LEN \
        'function abs(x){return (0>x)?-x:x}
         BEGIN{i=0}
         {if (abs($2)<1 && abs($3)<1){i=i+1;print i,$1,$3,$2,0}}'`
# number of stress observation segments
0
```

Investigating the effect of rifting on postseismic relaxation

with effect of rift zone

Postseismic relaxation following the 1999 Mw 7.6 Chi-Chi earthquake

• Largest displacements in the near field of the rupture in a direction compatible with thrusting.

• Anomalously high cumulative displacements 10 yr after the quake along the Longitudinal Valley.

• Localized deformation along the south extension of the Chelungpu Fault.

• Escape motion of the northern stations.

• Large heterogeneities of characteristic relaxation times with factors up to a factor of 10 or more.

UPLIFT AND EXHUMATION OF THE CENTRAL RANGE

Beissac et al. (2007), Simoes et al. (2007)

• Geothermologic markers indicate high temperature anomalies below the Hsuehshan Range (HR) and the Tananao Complex (TC) around a colder the Backbone Slate (BS) units.

• A thermo-kinematic model indicates that the high background thermal gradient of 30-35 °C/km in Taiwan is uplifted to reach 400 °C at 10 km depth.

THE CENTRAL RANGE VP AND SEISMIC ANOMALY

The Central Range is a domain of anomalous Vp, Vp/Vs/and low seismicity

data from (Wu et al., 1997, 2007)

FULLY-COUPLED AFTERSLIP-VISCOELASTIC MODELS

Model D. coupled afterslip & 3D viscoelastic flow SUN1 FLNM CLP elastic brittle 30 η_1 viscoelastic -20 -40 20 40 60 -60 0 distance (km)

• Explains many simultaneous features of the observations:

- ➡ Near-field displacement
- ➡ Long. Valley large displacements
- ➡ Long. Valley vertical polarity
- → Extrusion of northern stations

➡ Different time scales in the near field and far field

- Vertical polarity in the near field greatly depends on the details of the viscoelastic structure.
- Lower-crust viscosity: 0.5-1x10¹⁹ Pa s
- Mid-crust viscosity: 0.5x10¹⁷ Pa s

1999 Mw 7.6 Chi-Chi, Taiwan, earthquake

Setup the mechanical structure

```
. . .
# number of linear viscous interfaces
1
# no. x3 gammadot0 (1/tm) cohesion
   1 30 0.5 0 our viscous substrate below 30km depth.
# number of viscous zone
1
# no. dgammadot0 x1 x2 x3 length width thickness strike dip
       5 -101.48 -0.90 15 200
                                   15
                                              40
                                                    20 90
# number of nonlinear viscous interfaces
                                             ductile zone below
0
                                              the Central Range.
# number of fault creep interfaces
1
# no. x3 Vo (a-b)sigma friction cohesion
                                        — friction properties
   1 0 30 1 0.6 0
# number of creeping faults
                                           for fault slip
2
# no. x1 x2 x3 length width strike dip rake
  1 -25.00 -32.00 0 80 20
                                  5 30
                                          90
                                                – creeping fault planes
  2 -26.51 -14.75 10 80 20 5 5 90
. . .
```

quick Paraview displays with the --dry-run option.

Monsoon excitation of the lower crust

Elastic or viscoelastic response to surface loads monitored by GRACE are modeled to compare with GPS time series.

Monsoon excitation of the lower crust

loads the list of GPS stations and setup the mechanical structure

```
# elastic parameters and gamma
80e6 80e6 8.33e-4
# integration time (years), time step (years)
7.12329 0.0273973
```

```
# number of observation points
`wc ../gps/gps_km.dat`
# no. NAME x1 x2 x3
`awk '{print NR,$1,$3,$2,0}' ../gps/gps_km.dat`
..
# number of linear viscous interfaces
1
# no depth gammadot0 cohesion (gammadot0=1/tm)
1 20.0 10 0.0
# number of linear ductile zones
0
```

Monsoon excitation of the lower crust

with a database of GRACE loads as a function of time

0	20020728_20020806_km.dat
0.0273973	20020807_20020816_km.dat
0.0547945	20020817_20020826_km.dat
0.0821918	20020827_20020905_km.dat
0.1095890	20020906_20020915_km.dat
0.1369860	20020916_20020925_km.dat
• • •	
7.0411000	20100329_20100407_km.dat
7.0684900	20100408_20100417_km.dat
7.0958900	20100418_20100427_km.dat

long list of surface loads

construct a complex history of loading

```
# number of coseismic events (when slip distribution is prescribed)
`wc $DDIR/$CATALOG`
`awk -v d=$DDIR '{
    if (0!=$1){print $1};
    print 0;
    print 0;
    print 0;
    system("wc "d"/"$2);
    system("cat "d"/"$2)}' $DDIR/$CATALOG`
EOF
```

More real-world examples

Explore the database of published coseismic slip models and their input file before starting your own

- Database of coseismic slip models and input files
 - 1964 Mw 9.2 Alaska earthquake
 - ▶ 1992 Mw 7.3 Landers, CA earthquake
 - ▶ 1999 Mw 7.1 Hector Mine, CA earthquake
 - ▶ 1999 Mw 7.6 Chi-Chi, Taiwan earthquake
 - 2001 Mw 7.8 Kokoxili, Tibet earthquake
 - 2004 Mw 6.0 Parkfield, CA earthquake
 - 2010 Mw 6.8 Yushu, Qinghai, China earthquake
 - 2011 Mw 9.0 Tohoku, Japan earthquake
 - 2010-2011 Canterbury earthquakes, New Zealand

Relax

www.geodynamics.org

Computational Infrastructure for Geodynamics