Bayesian Earthquake Modeling

Sarah Minson USGS Seattle

Featuring contributions from... Mark Simons James L. Beck Junle Jiang Francisco H. Ortega Asaf Inbal Susan E. Owen Anthony Sladen

Overview

- 1. Some arguments for using Bayesian analysis
- 2. How to implement Bayesian methods
- 3. Applications:
 - a) Bayesian source model for the great 2011 Tohoku-Oki earthquake
 - b) Bayesian detection of slow slip events

Caveat

- This talk is mostly about earthquakes...
- ...But the beauty of Bayesian methods is that the specifics of the model don't matter

Geophysics is filled with underdetermined inverse problems:

- What is plate locking near trench?
- We know moment or potency, but what is the length and width of rupture?
- We know surface rupture of a vertical strike-slip earthquake, but what happened at depth?
- ...Plus many, many more

Uncertainty begets uncertainty

- E.g., uncertainty in spatial slip distribution yields uncertainty in inferred static stress changes
- E.g., uncertainty in STF and V_r yields uncertainty in rupture dynamics
- The problem isn't just that we can't constrain our models, but that we then try to draw conclusions from our non-unique models...

Seismic gaps, spatial relationship between
 coseismic/postseismic/interseismic slip

What to do?

Hide uncertainty Embrace uncertainty

Hide uncertainty

- We do this a lot whether we mean to or not
- Regularized inverse picks one solution which fits data and regularization scheme
 - Choice of regularization is often based on convenience not physics
 - Regularization doesn't always mean what we think it means:

Embrace uncertainty

- When faced with a lack of model resolution, the best answer to the inverse problem is to identify the ensemble of all plausible models which satisfy the data
- "Plausible" describes what you believe model should be in the absence of data

These are your prior assumptions

Making explicit assumptions is a feature not a bug

Some possible prior assumptions for earthquakes

- Earthquakes are elastic
 - Limit on the maximum spatial gradient of slip
- Earthquakes rupture causally
- Known tectonic setting → known direction of slip

 Spatial relationship between coseismic/interseismic/postseismic slip,

ETS, etc.

Making explicit assumptions is a feature not a bug

What should we do with underdetermined inverse problems?

• Bayesian inference:

- 1. Start with whatever prior assumptions you may have about your model (prior PDF)
- 2. Gather some observations (data likelihood)
- 3. Update the PDF describing possible models in light of these data (posterior PDF)
 - What is the posterior PDF?
- It's the distribution of all plausible models which satisfy the data

 $\mathbf{P}(\theta \,|\, D) \propto \mathbf{P}(\theta) \cdot \mathbf{P}(D \,|\, \theta)$

D = Data

 $\theta = Model$

C =errors in data + errors in physics

Inverse problems without inversion

 $\mathbf{P}(\boldsymbol{\theta} \mid \boldsymbol{D}) \propto \mathbf{P}(\boldsymbol{\theta}) \cdot e^{-\frac{1}{2} [\boldsymbol{D} - \boldsymbol{G}(\boldsymbol{\theta})]^T \cdot \boldsymbol{C}^{-1} \cdot [\boldsymbol{D} - \boldsymbol{G}(\boldsymbol{\theta})]}$

- Only the forward problem is evaluated!
- Notice that the only matrix inverse is C⁻¹
 - Covariance matrices are symmetric positive definite
 - Inverse exists
 - Regularization is not required even for illconditioned problems

Why choose Bayesian analysis?

Optimization	Bayesian
One solution	Distribution of solutions
Converges to one minimum	Multi-peaked solution spaces OK
Regularized (lots of decisions)	No a priori regularization required
Limited choice of a priori constraints	Generalized a priori constraints
Error analysis hard for nonlinear problems	Error analysis comes free with solution
Sensitive to model parameterization (model covariance leads to trade-offs)	Insensitive to model parameterization (if model covariance is estimated)

Q. Bayesian analysis is the bee's knees, but how do I do it?

• A. Two options:

- 1. If you choose your priors wisely, you can get an analytical form of $P(\theta|D)$
 - One way to do this is with a conjugate prior: e.g., – $P(D|\theta)$ Gaussian & $P(\theta)$ Gaussian $\rightarrow P(\theta|D)$ Gaussian
- You can choose whatever the heck priors and data likelihood you want and draw samples of P(θ|D) by Monte Carlo simulation
- Option 1 requires brain power and possible compromise. Option 2 requires a whole lotta computer power.

Curse of Dimensionality

- Monte Carlo simulation of PDFs requires drawing enough samples to fill the model space
 - Huge numbers of samples required for highdimensional problems
 - One sample = One forward model evaluation
- The total numerical cost is:
 - Number of samples X Time to compute forward model
 - If you have a large number of model parameters, you need a very fast forward model
 - If you have a slow forward model, you must have a lowdimensional model

A few samplers you could use

- Rejection method: parallel but inefficient
- Metropolis algorithm: more efficient, but MCMC (i.e., a random walk) is serial
- Various tempering, annealing, and transitioning algorithms
- Build your own
 - CATMIP (efficient and parallel)

More on Monte Carlo simulation

- All algorithms for Monte Carlo simulation of an unknown target PDF are similar:
 - 1. Generate a candidate sample ($\theta_{proposed}$) from a proposal PDF (usually Gaussian)
 - 2. Decide whether to keep that sample
 - e.g., for the Metropolis algorithm (random walk):
 - Let $r = P(\theta_{proposed}|D) / P(\theta_{current}|D)$
 - If r > 1, accept candidate sample
 - Otherwise draw u~U(0,1), a random sample from the uniform distribution between 0 and 1
 - If r > u, accept candidate sample
 - Otherwise reject candidate sample

Cascading Adaptive Transitional Metropolis In Parallel: CATMIP

 Transitioning AKA Tempering AKA Simulated Annealing*

 $P(\theta \mid D) \propto P(\theta) \cdot P(D \mid \theta)^{\beta}$

 $0 \le \beta \le 1$

- Dynamic cooling schedule^{**}
- Parallel Metropolis
- Simulation adapts to model covariance^{*}
- Simulation adapts to rejection rate^{*}
- Resampling** Static **Kinematic** $\mathbf{P}(\boldsymbol{\theta} \mid \boldsymbol{D}) \propto \mathbf{P}(\boldsymbol{\theta}_{s}) \cdot \mathbf{P}(\boldsymbol{D}_{s} \mid \boldsymbol{\theta}_{s})^{\beta} \cdot \mathbf{P}(\boldsymbol{\theta}_{k}) \cdot \mathbf{P}(\boldsymbol{D}_{k} \mid \boldsymbol{\theta}_{s}, \boldsymbol{\theta}_{k})^{\alpha}$ Cascading Marinari and Parisi (1992) $0 \le eta \le 1$, lpha = 0Ching and Chen (2007) $\beta = 1, \quad 0 \le \alpha \le 1$ Matt Muto

Example: Mixture of Gaussians

• Target distribution:

$$N(\mu_1, \sigma_1^2) + 3 \cdot N(\mu_2, \sigma_2^2)$$

CATMIP

- 1. Sample $P(\theta)$
- 2. Calculate β
- 3. Resample
- 4. Metropolis algorithm in parallel
- 5. Collect final samples
- 6. Go back to Step 2, lather, rinse, and repeat until cooling is achieved

CATMIP

Sampler performance comparison

Step-by-step example 1

$\mathbf{P}(\theta \,|\, D) \propto \mathbf{P}(\theta) \cdot \mathbf{P}(D \,|\, \theta)$

- The steps:
 - 1. Design a forward model to stick into data likelihood, $P(D|\theta)$
 - 2. Choose prior assumptions to define prior PDF, $P(\theta)$
 - 3. Use Monte Carlo sampling to generate lots of random models and eventually fill in posterior PDF, $P(\theta|D)$

Forward model

- Define a finite fault mesh, hypocenter and elastic structure
 - For each patch, we solve for four parameters:
 - 1. Strike-slip motion
 - 2. Dip-slip motion
 - 3. Slip duration of triangular STF
 - 4. Rupture velocity
 - For a mesh with N patches, θ is a vector with 4*N elements
 - For GPS offsets, seafloor geodesy, and tsunami waveforms, data predictions are:

- For 1-Hz kinematic GPS, data predictions are synthetic seismograms calculated by:
 - 1. Scaling GFs for each patch by slip on that patch
 - 2. Convolving with the appropriate STF
 - 3. Time-shifting each waveform according to rupture velocity field
 - 4. Summing all of the resulting per-patch synthetics

Prior PDF

- Broad priors
 - What does the data resolve and what isn't resolved?
- Strike-slip prior is zero-mean Gaussian
 On average, slip is thrust
- Dip-slip prior is uniform ~ $U(u_{min} < 0, \infty)$
 - All dip-slip motion is equally likely except large amounts of normal motion is forbidden
- Priors on rise time and rupture velocity are uniform and broad

Sample

• For i=1...Gazillion

- 1. Draw a random source model, θ
- 2. Assign a prior probability to that model, $P(\theta)$
- 3. Run your forward model, $G(\theta)$
- 4. Evaluate $P(D | \theta)$
- 5. Evaluate the unnormalized posterior probability, $P(\theta|D)=P(D|\theta)P(\theta)$

Average posterior slip

Posterior mean (one statistic of many) Slip duration Rupture velocity

141'E 142'E 143'E 144'E 145°E 146'E

Tsunami data

1 Hz GPSEastNorth

All models

Slip is less well constrained as rupture evolves

But total moment magnitude is well constrained

Along-strike integrated slip

- Significant near-trench fault slip
 - But, on average, peak slip is not at the trench
- Decrease in slip amplitude near trench is recoverable because the model is not regularized
- Localized zones of high slip may exist near trench

Conclusions

- Fully Bayesian kinematic rupture model for the Tohoku-Oki earthquake
 - Significant slip near trench, but peak large-scale slip feature is not at trench
 - Uncertainty in slip model is essential to understanding the subduction zone

There's more you can do with Bayes' theorem

• Error updating:

$$\mathbf{P}(\boldsymbol{D} \mid \boldsymbol{\theta}) = e^{-\frac{1}{2} [\boldsymbol{D} - \boldsymbol{G}(\boldsymbol{\theta})]^T \cdot \boldsymbol{C}^{-1} \cdot [\boldsymbol{D} - \boldsymbol{G}(\boldsymbol{\theta})]}$$

C = errors in data + errors in physics

$$D = G(\theta) + \mathcal{E}_D + \mathcal{E}_{G(\theta)}$$

• We don't know what $\varepsilon_{G(\theta)}$ is, but we can sample for $\varepsilon_{G(\theta)}$ just like any other variable

There's more you can do with Bayes' theorem

 Model class selection: which model design fits the data best?

$$P(\theta \mid D) = \frac{P(D \mid \theta)P(\theta)}{\int P(D \mid \theta)P(\theta)} = \frac{P(D \mid \theta)P(\theta)}{P(D \mid \mathcal{M})}$$

- Denominator is the evidence in favor of model, ${\mathcal M}$

CASCADIA SLOW-SLIP EVENTS: THE RIDICULOUSLY CHEAP ANALYTICAL SOLUTION APPROACH

Step-by-step example 2

Bayesian changepoint detection

- Changepoint: the time that at least one model parameter changes
- Can use Bayes' theorem to compute the probability of a changepoint as a function of time, P(changepoint=t|D)
- Can also use Bayes' theorem to assess significance of potential changepoints

Bayesian linear regression

- In least squares, we solve D=G*m to get m±C_m
- This is equivalent to saying that our model is $\beta \sim \mathcal{N}(m, C_m)$, with m and C_m unknown
 - With the right choice of priors P(m) and $P(C_m)$, we can stick this into Bayes' theorem and get an analytical solution

Bayesian changepoint detection = Bayesian piecewise linear regression

• Model: $\begin{cases} \mathbf{G}_1(x) \cdot \mathbf{\beta}_1 & x < t \\ \mathbf{G}_2(x) \cdot \mathbf{\beta}_2 & x \ge t \end{cases}$

• Goal: $P(\theta=t|D,\mathcal{M})$ as a function of t

Analytical solution with conjugate prior

$$P(\theta | \mathbf{D}) = \frac{P(\mathbf{D} | \theta) P(\theta)}{P(\mathbf{D} | t, \mathcal{M})} = \frac{P(\mathbf{D} | \beta, \sigma^2) P(\beta, \sigma^2)}{P(\mathbf{D} | t, \mathcal{M})} = \frac{P(\mathbf{D} | \beta, \sigma^2) P(\beta | \sigma^2) P(\sigma^2)}{P(\mathbf{D} | t, \mathcal{M})}$$

$$P(\mathbf{D} | \theta) = P(\mathbf{D} | \beta, \sigma^2) = \mathcal{N}(\mathbf{D} - \mathbf{G}\beta, \sigma^2 \mathbf{I})$$

$$P(\beta | \sigma^2) = \mathcal{N}(\mathbf{m}, \sigma^2 \mathbf{V})$$

$$P(\sigma^2) = IG(a, b)$$

$$P(\theta | \mathbf{D}) \propto P(\mathbf{D} | \theta) P(\beta | \sigma^2) P(\sigma^2) = \mathcal{N}IG(\mathbf{m}, \mathbf{V}, a, b)$$

$$\rightarrow P(\theta | \mathbf{D}) = \mathcal{N}IG(\mathbf{m}^*, \mathbf{V}^*, a^*, b^*)$$

$$P(\mathbf{D} | t, \mathcal{M}) = \frac{P(\mathbf{D} | \theta) P(\theta)}{P(\theta | \mathbf{D})} = \frac{1}{(2\pi)^{n/2}} \frac{|\mathbf{V}^*|^{1/2} (b)^a \Gamma(a^*)}{|\mathbf{V}|^{1/2} (b^*)^a \Gamma(a)}$$

$$\mathbf{V}^* = (\mathbf{V}^{-1} + \mathbf{G}^T \mathbf{G})^{-1}$$

$$a^* = a + \frac{n}{2}$$

$$b^* = b + \frac{1}{2} \{\mathbf{m}^T \mathbf{V}^{-1} \mathbf{m} + \mathbf{D}^T \mathbf{D} - (\mathbf{m}^*)^T (\mathbf{V}^*)^{-1} (\mathbf{m}^*)\}$$

Long story short...

• The posterior probability for a changepoint as a function of time:

$$P(\theta = t \mid \mathbf{D}, \mathcal{M}) = \frac{P(\mathbf{D} \mid \theta = t, \mathcal{M})P(\theta = t)}{\sum_{i=1}^{n} P(\mathbf{D} \mid \theta = t_i, \mathcal{M})P(\theta = t_i)}$$

• With
$$P(\mathbf{D} | \theta = t, \mathcal{M}) = \frac{1}{(2\pi)^{n/2}} \frac{|\mathbf{V}^*|^{1/2} (b)^a \Gamma(a^*)}{|\mathbf{V}|^{1/2} (b^*)^{a^*} \Gamma(a)}$$

Conclusions

- Bayesian analysis has many advantages over traditional optimization solutions
 - Solve under-determined inverse problems without regularization
 - Produces ensemble of all acceptable solutions
- Given sufficient computational resources, any Bayesian solution can be formed by Monte Carlo simulation
- For some problems, the solution is analytical and just as computationally cheap and easy as traditional LSQ