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OverviewOverviewOverviewOverview

1 Some arguments for using Bayesian analysis1. Some arguments for using Bayesian analysis
2. How to implement Bayesian methods
3 A li ti3. Applications:

a) Bayesian source model for the great 2011 
T h k Oki th kTohoku-Oki earthquake

b) Bayesian detection of slow slip events



CaveatCaveatCaveatCaveat

• This talk is mostly about earthquakesThis talk is mostly about earthquakes…
• …But the beauty of Bayesian methods is 

that the specifics of the model don’t matterthat the specifics of the model don t matter





Geophysics is filled with underGeophysics is filled with under--
d t i d i bld t i d i bldetermined inverse problems: determined inverse problems: 

• What is plate locking near trench?What is plate locking near trench?
• We know moment or potency, but what is 

the length and width of rupture?the length and width of rupture?
• We know surface rupture of a vertical 

t ik li th k b t h t h dstrike-slip earthquake, but what happened 
at depth?

• …Plus many, many more



Uncertainty begets uncertaintyUncertainty begets uncertaintyUncertainty begets uncertaintyUncertainty begets uncertainty
• E.g., uncertainty in spatial slip distribution 

yields uncertainty in inferred static stressyields uncertainty in inferred static stress 
changes
E t i t i STF d V i ld• E.g., uncertainty in STF and Vr yields 
uncertainty in rupture dynamics

• The problem isn’t just that we can’t constrain 
our models, but that we then try to draw 
conclusions from our non-unique models…
– Seismic gaps, spatial relationship between 

coseismic/postseismic/interseismic slip



What to do?What to do?What to do?What to do?

• Hide uncertainty • Embrace uncertaintyHide uncertainty Embrace uncertainty



Hide uncertaintyHide uncertainty
• We do this a lot whether we mean to or not
• Regularized inverse picks one solution g p

which fits data and regularization scheme
– Choice of regularization is often based onChoice of regularization is often based on 

convenience not physics
– Regularization doesn’t always mean what we g y

think it means:



Embrace uncertaintyEmbrace uncertaintyEmbrace uncertaintyEmbrace uncertainty

• When faced with a lack of modelWhen faced with a lack of model 
resolution, the best answer to the inverse 
problem is to identify the ensemble of allproblem is to identify the ensemble of all 
plausible models which satisfy the data

• “Plausible” describes what you believe• Plausible  describes what you believe 
model should be in the absence of data

These are your prior assumptions– These are your prior assumptions



Some possible prior Some possible prior 
ti f th kti f th kassumptions for earthquakesassumptions for earthquakes

• Earthquakes are elasticEarthquakes are elastic
– Limit on the maximum spatial gradient of slip

Earthquakes rupture causally• Earthquakes rupture causally 
• Known tectonic setting → known direction 

fof slip
• Spatial relationship between 

coseismic/interseismic/postseismic slip, 
ETS, etc.



What should we do with underWhat should we do with under--
determined inverse problems?determined inverse problems?determined inverse problems?determined inverse problems?

• Bayesian inference:Bayesian inference:
1. Start with whatever prior assumptions you 

may have about your model (prior PDF)y y (p )
2. Gather some observations (data likelihood)
3. Update the PDF describing possible models3. Update the PDF describing possible models 

in light of these data (posterior PDF)
• What is the posterior PDF?

• It’s the distribution of all plausible models 
which satisfy the datay



BayesBayes’ Theorem (1763)’ Theorem (1763)BayesBayes  Theorem (1763) Theorem (1763)
• For inverse problems:       GDCGD T
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Inverse problems without inversionInverse problems without inversionpp
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• Only the forward problem is evaluated!
N ti th t th l t i i i C 1
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• Notice that the only matrix inverse is C-1

– Covariance matrices are symmetric positive 
d fi itdefinite

• Inverse exists
Regularization is not required even for ill– Regularization is not required even for ill-
conditioned problems



Why choose Bayesian analysis?Why choose Bayesian analysis?Why choose Bayesian analysis?Why choose Bayesian analysis?
Optimization Bayesian
One solution Distribution of solutionsOne solution Distribution of solutions
Converges to one minimum Multi-peaked solution spaces OK
Regularized (lots of decisions) No a priori regularization required
Limited choice of a priori constraints Generalized a priori constraints
Error analysis hard for nonlinear 
problems

Error analysis comes free with solution

Sensitive to model parameterization
(model covariance leads to trade-offs)

Insensitive to model parameterization
(if model covariance is estimated)



Q. Bayesian analysis is the Q. Bayesian analysis is the 
b ’ k b t h d I d it?b ’ k b t h d I d it?bee’s knees, but how do I do it?bee’s knees, but how do I do it?
• A Two options:A. Two options:

1. If you choose your priors wisely, you can get 
an analytical form of P(θ|D)an analytical form of P(θ|D)

• One way to do this is with a conjugate prior: e.g.,
– P(D|θ) Gaussian & P(θ) Gaussian → P(θ|D) Gaussian

2. You can choose whatever the heck priors 
and data likelihood you want and draw 
samples of P(θ|D) by Monte Carlo simulation

• Option 1 requires brain power and 
possible compromise.  Option 2 requires 
a whole lotta computer power.



Curse of DimensionalityCurse of Dimensionalityyy
• Monte Carlo simulation of PDFs requires 

d i h l fill h d ldrawing enough samples to fill the model space
– Huge numbers of samples required for high-

dimensional problemsdimensional problems
• One sample = One forward model evaluation

• The total numerical cost is:• The total numerical cost is:
– Number of samples X Time to compute forward 

modelmodel
• If you have a large number of model parameters, you 

need a very fast forward model
If h l f d d l t h l• If you have a slow forward model, you must have a low-
dimensional model



A few samplers you could useA few samplers you could useA few samplers you could useA few samplers you could use

• Rejection method: parallel but inefficientRejection method: parallel but inefficient
• Metropolis algorithm: more efficient, but 

MCMC (i e a random walk) is serialMCMC (i.e., a random walk) is serial
• Various tempering, annealing, and 

t iti i l ithtransitioning algorithms
• Build your own

– CATMIP (efficient and parallel)



More on Monte Carlo simulationMore on Monte Carlo simulation
• All algorithms for Monte Carlo simulation 

of an unknown target PDF are similar:g
1. Generate a candidate sample (θproposed) from 

a proposal PDF (usually Gaussian)p p ( y )
2. Decide whether to keep that sample

• e.g., for the Metropolis algorithm (random walk):
• Let r = P(θproposed|D) / P(θcurrent|D)

– If r > 1, accept candidate sample
Otherwise draw u U(0 1) a random sample from the– Otherwise draw u~U(0,1), a random sample from the 
uniform distribution between 0 and 1
• If r > u, accept candidate sample

Oth i j t did t l• Otherwise reject candidate sample



Cascading Adaptive Transitional Cascading Adaptive Transitional 
Metropolis In Parallel: CATMIPMetropolis In Parallel: CATMIPMetropolis In Parallel: CATMIPMetropolis In Parallel: CATMIP

• Transitioning AKA Tempering AKA g p g
Simulated Annealing*

10)|P()P()|P(   DD
– Dynamic cooling schedule**

• Parallel Metropolis
• Simulation adapts to model covariance**

• Simulation adapts to rejection rate***Simulation adapts to rejection rate
• Resampling**

• Cascading ),|P()P()|P()P()|P(   
kskksss DDD

Static Kinematic

• Cascading
* Marinari and Parisi (1992)
** Ching and Chen (2007)
*** Matt Muto 10,1
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Example: Mixture of GaussiansExample: Mixture of GaussiansExample: Mixture of GaussiansExample: Mixture of Gaussians
• Target distribution:
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CATMIPCATMIPCATMIPCATMIP
1. Sample P(θ)
2. Calculate β
3. Resamplep
4. Metropolis algorithm in parallel
5. Collect final samples5. Collect final samples
6. Go back to Step 2, lather, rinse, and 

repeat until cooling is achievedrepeat until cooling is achieved



CATMIPCATMIPCATMIPCATMIP



Sampler performance comparisonSampler performance comparison



TOHOKUTOHOKU--OKI RUPTURE MODEL:OKI RUPTURE MODEL:
Step-by-step example 1

TOHOKUTOHOKU--OKI RUPTURE MODEL:OKI RUPTURE MODEL:
THE HIT IT WITH A BIG NUMERICAL THE HIT IT WITH A BIG NUMERICAL 
HAMMER APPROACHHAMMER APPROACH
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• The steps:
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1. Design a forward model to stick into data 
likelihood, P(D|θ)

2. Choose prior assumptions to define prior 
PDF, P(θ)

3. Use Monte Carlo sampling to generate lots of 
random models and eventually fill in posterior 
PDF P(θ|D)PDF, P(θ|D)



Forward modelForward model
• Define a finite fault mesh, hypocenter and elastic structure, yp

– For each patch, we solve for four parameters:
1. Strike-slip motion
2. Dip-slip motion
3. Slip duration of triangular STF
4. Rupture velocity

– For a mesh with N patches, θ is a 
vector with 4*N elements 
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vector with 4*N elements
• For GPS offsets, seafloor geodesy, 

and tsunami waveforms, 
data predictions are:
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data predictions are:

• For 1-Hz kinematic GPS, data predictions are synthetic 
i l l d b
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seismograms calculated by:
1. Scaling GFs for each patch by slip on that patch
2. Convolving with the appropriate STF
3. Time-shifting each waveform according to rupture velocity field
4. Summing all of the resulting per-patch synthetics



Prior PDFPrior PDF
• Broad priors

What does the data resolve and what isn’t– What does the data resolve and what isn t 
resolved?

• Strike slip prior is zero mean Gaussian• Strike-slip prior is zero-mean Gaussian
– On average, slip is thrust

Di li i i if U( 0 )• Dip-slip prior is uniform ~ U(umin<0,)
– All dip-slip motion is equally likely except large 

amounts of normal motion is forbidden
• Priors on rise time and rupture velocity are 

uniform and broad



SampleSampleSampleSample

• For i=1 GazillionFor i=1…Gazillion
1. Draw a random source model, θ
2 Assign a prior probability to that model P(θ)2. Assign a prior probability to that model, P(θ)
3. Run your forward model, G(θ)
4 Evaluate P(D| θ)4. Evaluate P(D| θ)
5. Evaluate the unnormalized posterior 

probability P(θ|D)=P(D|θ)P(θ)probability, P(θ|D)=P(D|θ)P(θ)



AverageAverageAverage Average 
posterior slipposterior slipp pp p





Posterior mean (one statistic of many)Posterior mean (one statistic of many)
Slip duration Rupture velocitySlip duration Rupture velocitySlip duration           Rupture velocitySlip duration           Rupture velocity



Tsunami dataTsunami dataTsunami dataTsunami data











1 Hz GPS1 Hz GPS
E t N thE t N thEast                       NorthEast                       North





All modelsAll modelsAll modelsAll models

Slip is less well constrained 
as rupture evolves

But total moment magnitude 
is well constrained



Average slipAverage slip

Slip



AlongAlong--strike integrated slipstrike integrated slip
• Significant near-trench 

fault slip
– But, on average, peak slip 

is not at the trench
D i li lit d• Decrease in slip amplitude 
near trench is recoverable 
because the model is notbecause the model is not 
regularized

• Localized zones of highLocalized zones of high 
slip may exist near trench



ConclusionsConclusions
• Fully Bayesian kinematic rupture 

model for the Tohoku-Oki earthquake
– Significant slip near trench, but peak 

large-scale slip feature is not at trench
– Uncertainty in slip model is essential to 

understanding the subduction zone



There’s more you can do with There’s more you can do with 
BB ’ th’ thBayesBayes’ theorem’ theorem

• Error updating:Error updating:
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• We don’t know what εG(θ) is, but we can 
sample for ε just like any other variable

)()( GD

sample for εG(θ) just like any other variable



There’s more you can do with There’s more you can do with 
BB ’ h’ hBayesBayes’ theorem’ theorem

• Model class selection: which modelModel class selection: which model 
design fits the data best?
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• Denominator is the evidence in favor 
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of model, M



CASCADIACASCADIA SLOWSLOW--SLIP EVENTS:SLIP EVENTS:
Step-by-step example 2

CASCADIACASCADIA SLOWSLOW--SLIP EVENTS:SLIP EVENTS:
THE RIDICULOUSLY CHEAP THE RIDICULOUSLY CHEAP 
ANALYTICAL SOLUTION ANALYTICAL SOLUTION 
APPROACHAPPROACHAPPROACHAPPROACH



BayesianBayesian changepointchangepoint detectiondetectionBayesian Bayesian changepointchangepoint detectiondetection

• Changepoint: the time that at least oneChangepoint: the time that at least one 
model parameter changes

• Can use Bayes’ theorem to compute the• Can use Bayes  theorem to compute the 
probability of a changepoint as a function 
of time P(changepoint=t|D)of time, P(changepoint=t|D)

• Can also use Bayes’ theorem to assess 
i ifi f t ti l h i tsignificance of potential changepoints



The Nile River The Nile River 
& The Aswan & The Aswan 

DamDamDamDam



Bayesian linear regressionBayesian linear regressiony gy g

• In least squares we solve D=G*m to getIn least squares, we solve D=G m to get 
mCm

• This is equivalent to saying that our model• This is equivalent to saying that our model 
is ~N(m, Cm ), with m and Cm unknown

With th i ht h i f i P( ) d P(C )– With the right choice of priors P(m) and P(Cm), 
we can stick this into Bayes’ theorem and get 
an analytical solutionan analytical solution



Bayesian Bayesian changepointchangepoint detection = detection = 
Bayesian piecewise linear regressionBayesian piecewise linear regressionBayesian piecewise linear regressionBayesian piecewise linear regression
• Model: txx 


  11 )( βGModel:

txx 
  22 )( βG

• Goal: P(θ=t|D,M) as a function of t



Analytical solution with conjugate priorAnalytical solution with conjugate prior
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Long story shortLong story shortLong story short…Long story short…

• The posterior probability for a changepointThe posterior probability for a changepoint
as a function of time:
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ConclusionsConclusions
• Bayesian analysis has many advantages over 

traditional optimization solutions
– Solve under-determined inverse problems without 

regularization
– Produces ensemble of all acceptable solutions

• Given sufficient computational resources, any p , y
Bayesian solution can be formed by Monte 
Carlo simulation

• For some problems, the solution is analytical 
and just as computationally cheap and easyand just as computationally cheap and easy 
as traditional LSQ


