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Overview

1. Some arguments for using Bayesian analysis
2. How to implement Bayesian methods

3. Applications:

a) Bayesian source model for the great 2011
Tohoku-Oki earthquake

b) Bayesian detection of slow slip events




Caveat

e This talk is mostly about earthquakes...

o ...But the beauty of Bayesian methods is
that the specifics of the model don’t matter







Geophysics is filled with under-
determined inverse problems:

What is plate locking near trench?

We know moment or potency, but what Is
the length and width of rupture?

We know surface rupture of a vertical

strike-slip earthquake, but what happened
at depth?

...Plus many, many more




Uncertainty begets uncertainty

* E.g., uncertainty in spatial slip distribution
yields uncertainty in inferred static stress
changes

* E.g., uncertainty in STF and V, yields

uncertainty in rupture dynamics

e The problem isn’t just that we can’t constrain
our models, but that we then try to draw
conclusions from our non-unigue models...

— Seismic gaps, spatial relationship between
coseismic/postseismic/interseismic slig




What to do?

e Hide uncertainty  Embrace uncertainty




Hide uncertainty

 We do this a lot whether we mean to or not
* Regularized inverse picks one solution
which fits data and regularization scheme

— Choice of regularization is often based on
convenience not physics

— Regularization doesn’'t always mean what we
think it means:




Embrace uncertainty

 When faced with a lack of model
resolution, the best answer to the inverse
problem is to identify the ensemble of all
plausible models which satisfy the data

e “Plausible” describes what you believe
model should be Iin the absence of data

— These are your prior assumptions

Making explicit assumptions
Is a feature not a bug




Some possible prior
assumptions for earthquakes

Earthquakes are elastic
— Limit on the maximum spatial gradient of slip

Earthquakes rupture causally

Known tectonic setting — known direction
of slip

Spatial relationship between
coseismic/interseismic/postseismic slip,

ETS, etc. Making explicit assumptions

Is a feature not a bug




What should we do with under-
determined inverse problems?

e Bayesian inference:

. Start with whatever prior assumptions you
may have about your model

. Gather some observations

. Update the PDF describing possible models
in light of these data

« What is the posterior PDF?

o |It’s the distribution of all plausible models
which satisfy the data




Bayes’ Theorem (1763)

—[o-6(o)] ¢ *{p-6(0)

e For inverse problems:

Data

Posterior Prior Likelihood

P(@| D)« P(8)-P(D|6)
D = Data
6 = Model
C =errorsin data + errors in physics



Inverse problems without inversion

P(0| D) o P(6)-& 2

e Only the forward problem is evaluated!

* Notice that the only matrix inverse is C-!

— Covariance matrices are symmetric positive
definite

e |lnverse exists

— Regularization is not required even for ill-
conditioned problems




Why choose Bayesian analysis?

Optimization

One solution

Converges to one minimum
Regularized (lots of decisions)
Limited choice of a priori constraints

Error analysis hard for nonlinear
problems

Sensitive to model parameterization
(model covariance leads to trade-offs)

Bayesian

Distribution of solutions

Multi-peaked solution spaces OK

No a priori regularization required
Generalized a priori constraints

Error analysis comes free with solution

Insensitive to model parameterization
(if model covariance is estimated)




Q. Bayesian analysis is the
bee’s knees, but how do | do It?

 A. Two options:

1. If you choose your priors wisely, you can get
an analytical form of P(6|D)
« One way to do this is with a conjugate prior: e.g.,

— P(DJ|O) Gaussian & P(0) Gaussian — P(8|D) Gaussian
2. You can choose whatever the heck priors
and data likelihood you want and draw
samples of P(0|D) by Monte Carlo simulation
e Option 1 requires brain power and
possible compromise. Option 2 requires
a whole lotta computer power.




Curse of Dimensionality

 Monte Carlo simulation of PDFs requires
drawing enough samples to fill the model space
— Huge numbers of samples required for high-

dimensional problems
 One sample = One forward model evaluation

e The total numerical cost Is:

— Number of samples X Time to compute forward
model

* If you have a large number of model parameters, you
need a very fast forward model

e If you have a slow forward model, you must have a low-
dimensional model




A few samplers you could use

Rejection method: parallel but inefficient

Metropolis algorithm: more efficient, but
MCMC (i.e., a random walk) is serial

Various tempering, annealing, and
transitioning algorithms

Build your own
— CATMIP (efficient and parallel)




More on Monte Carlo simulation

 All algorithms for Monte Carlo simulation
of an unknown target PDF are similar:

1. Generate a candidate sample (6,,oposeq) from
a proposal PDF (usually Gaussian)

2. Decide whether to keep that sample

 e.g., for the Metropolis algorithm (random walk):

° Letr = P(eproposedlD) / P(ecurrentlD)
— Ifr> 1, accept candidate sample

—  Otherwise draw u~U(0,1), a random sample from the
uniform distribution between 0 and 1

« Ifr>u, accept candidate sample
»  Otherwise reject candidate sample




Cascading Adaptive Transitional
Metropolis In Parallel: CATMIP

Transitioning AKA Tempering AKA
Simulated Annealing

P(@| D) < P(6)-P(D|8)” 0
— Dynamic cooling schedule™

Parallel Metropolis

Simulation adapts to model covariance™
Simulation adapts to rejection rate™
Resampling™ Static Kinemati
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Example: Mixture of Gaussians

e Target distribution:

N(zy,07)+3-N(1, 07)




CATMIP

. Sample P(0)

. Calculate

. Resample

. Metropolis algorithm in parallel
. Collect final samples

. Go back to Step 2, lather, rinse, and
repeat until cooling Is achieved




CATMIP




Sampler performance comparison




Step-by-step example 1

TOHOKU-OKI RUPTURE MODEL.:
THE HIT IT WITH A BIG NUMERICAL
HAMMER APPROACH




P(@| D)« P(@)-P(D|6)

* The steps:

1. Design a forward model to stick into data
likelihood, P(D|0)

2. Choose prior assumptions to define prior

PDF, P(6)

. Use Monte Carlo sampling to generate lots of
random models and eventually fill in posterior
PDF, P(6|D)




Forward model

* Define a finite fault mesh, hypocenter and elastic structure

— For each patch, we solve for four parameters:
1. Strike-slip motion
2. Dip-slip motion
3. Slip duration of triangular STF
4. Rupture velocity

— For a mesh with N patches, 8 is a
vector with 4*N elements

 For GPS offsets, seafloor geodesy,
and tsunami waveforms,
data predictions are:

 For 1-Hz kinematic GPS, data predictions are synthetic
seismograms calculated by:

Scaling GFs for each patch by slip on that patch

Convolving with the appropriate STF

Time-shifting each waveform according to rupture velocity field
Summing all of the resulting per-patch synthetics




Prior PDF

Broad priors

— What does the data resolve and what isn’t
resolved?

Strike-slip prior Is zero-mean Gaussian

— On average, slip is thrust
Dip-slip prior Is uniform ~ U(u,,;,<0,0)

— All dip-slip motion is equally likely except large
amounts of normal motion is forbidden

Priors on rise time and rupture velocity are
uniform-and broad




Sample

e Fori=1...Gazillion
1. Draw a random source model, ©

. Assign a prior probability to that model, P(6)
. Run your forward model, G(6)
. Evaluate P(D| 0)

. Evaluate the unnormalized posterior
probabllity, P(8|D)=P(D|0)P(0)




Average
posterior slip
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Posterior mean (one statistic of many)
Slip duration Rupture velocity




Tsunami data
















1 Hz GPS
East North







All models

Slip Is less well constrained Buttotal moment
as rupture evolves IS well constrained




Average slip




Along-strike integrated slip

e Significant near-trench
fault slip
— But, on average, peak slip

IS not at the trench

* Decrease Iin slip amplitude
near trench is recoverable
because the model is not
regularized

e Localized zones of high
slip may exist near trench




Conclusions

* Fully Bayesian kinematic rupture
model for the Tohoku-Oki earthquake

— Significant slip near trench, but peak
large-scale slip feature Is not at trench

— Uncertainty in slip model is essential to
understanding the subduction zone




There’s more you can do with
Bayes’ theorem

e Error updating:

L [D-6(0)[ ¢ 1 [D-G(0)]

P(D|O)=¢ 2

C =errorsin data + errors in physics

D=G(0)+¢, + &0

« We don’t know what &g IS, but we can
sample for g Just like any other variable




There’s more you can do with
Bayes’ theorem

e Model class selection: which model
design fits the data best?

P(D|O)P(F) _P(D|0)P(0)

R E P GTEY)

e Denominator Is the evidence In favor
of model, M




Step-by-step example 2

CASCADIA SLOW-SLIP EVENTS:
THE RIDICULOUSLY CHEAP
ANALYTICAL SOLUTION

APPROACH




Bayesian changepoint detection

 Changepoint: the time that at least one
model parameter changes

e Can use Bayes’ theorem to compute the
probability of a changepoint as a function
of time, P(changepoint=t|D)

e Can also use Bayes’ theorem to assess
significance of potential changepoints




The Nile River
& The Aswan
Dam




Bayesian linear regression

 In least squares, we solve D=G*m to get
m=C

e This Is equivalent to saying that our model
is f~N(m, C. ), with m and C_, unknown

— With the right choice of priors P(m) and P(C.,),
we can stick this into Bayes’ theorem and get
an analytical solution




Bayesian changepoint detection =
Bayesian piecewise linear regression

. Model: {Gl(x)'ﬁl X<t

Gz(x)'ﬁz X1

e Goal: P(6=t|D,’M) as a function of t




Analytical solution with conjugate prior

_P(D|6)P(6) _P(D[B.c*)P(B.c*) _P(D|B.o°)P(B|5*)P(c?)
P(D|t, M) P(D|t, M) P(D|t, M)
P(D|6)=P(D|B,c°) =N (D-GB,c’°l)

PPB|o®)=N(m,c’V)

P(c*)=1G(a,b)

P(0| D) c P(D|8)P(B|c?)P(c?) = NIG(m,V,a,b)
— P@O|D)=NIG(m",V ,a’,b")
gl & 0w

P(D|t, M) = P(0|D) = %

V' =(V1+G'G)

P(0|D)

. n
a =a+—
2

b =b+ % {mTV‘lm +D'D-(m")’ (V*)_l(m*)}




Long story short...

* The posterior probability for a changepoint
as a function of time:

p(@=t|D, M)~ _PLIO=LIPEO=1)

S P(D|0=t, M)P(0=t,)

1 |V [*(b)°'r(@)

P(Dl@zt,M):W . *
(272)"" |V['* (b)" T'(a)
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Conclusions

 Bayesian analysis has many advantages over
traditional optimization solutions

— Solve under-determined inverse problems without
regularization

— Produces ensemble of all acceptable solutions

* Given sufficient computational resources, any
Bayesian solution can be formed by Monte
Carlo simulation

* For some problems, the solution is analytical
and just as computationally cheap and easy
as traditional LSQ




