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faults through observations from the lab to 
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Oceanic Transform Faults are Relatively Simple 

1.  Simple Geometry (well defined length & slip rate) 
2.  Long-lived with large cumulative offsets 
3.  Simple Composition: Gabbro, Peridotite, and alteration phases (e.g. 

serpentine and talc)  

Courtesy of NOAA Ocean Explorer!



Frictional Stability of Oceanic Crust  
He, et al., Tectonophysics, 2007; Moore et al., Int. Geology Review, 2004; Moore & Lockner, 2008 

•  Gabbro and Serpentine are velocity 
weakening at T > ~200˚C;  

•  Talc is always velocity strengthening 

Serpentine- Moore et al., 2004!

Gabbro- He et al., 2007!



Starting Material!

Frictional Stability of Oceanic Mantle!
Boettcher, et al., JGR, 2007!
!
Where is the boundary between potentially 
seismogenic conditions and those that will only 
produce stable slip?!
!

Experimental Conditions!
Sample Material: olivine powder < 60 µm!
Temperature: 600, 800, & 1000˚C!
Pressure: 50, 100, 200, & 300 MPa!
Pore Fluids: dry=argon & wet=water !
Loading Rate: 0.06 to 60 µm/s!
Strain Rate: 3e-6 to 3e-3 s-1!

(V = 30 mm/yr ➔ strain rate of 1e-12 s-1)!

Abercrombie and Ekström, 
Nature, 2001!
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Velocity Weakening!
(potentially unstable)!

Velocity Strengthening!
(stable)!

Axial Displacement !
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Frictional Stability of Oceanic Mantle!
Boettcher, et al., JGR, 2007!
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The time and rate dependent processes result from creep of the surface 
contact and a consequent increase in the real area of contact over time. !

Frictional Stability of Oceanic Mantle-!
Creep at Asperities!
Boettcher, et al., JGR, 2007!
!

!



deformed!

undeformed!

Olivine Friction Experiments- Creep at Asperities!
Boettcher, et al., JGR, 2007!
!

!



Frictional Stability of Oceanic Mantle!
Boettcher, et al., JGR, 2007!
!

Transition to Stable Sliding: !    
Scaling from the lab to the Earth!
!

σA = σP(1+(RT ln(ε) /HB))1/q!
(Goetze, 1978)!
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σA= Asperity Stress!
σP= Peierl’s Stress!
R = Gas Constant!
T = Temperature!
H = Activation Enthalpy!
q, B = Empirical Constants!

600˚C!

McKenzie, et. al, EPSL, 2005!



Oceanic Transform Fault Rheological Model:!
!

!

Warren & Hirth, 2006!

GBS/Diffusion Creep T>600˚C, 
σ ≈100 MPa!



1.  Global predictability of earthquake distributions based on scaling relations!
2.  Long-term predictability as evidenced by stable seismic cycles!
3.  Short-term Predictability as evidenced by foreshocks!

Oceanic Transform Fault Seismicity: 
Relatively Predictable Earthquakes 



!

Predictable Fault Thermal Structure:!
!Half-space cooling model: AT = Cref L3/2V-1/2!

AT!

ridge transform fault!

Scaling between Tectonic and Seismic Parameters!



Transform Fault Thermal Structure!
Behn, et al., Geology, 2007!
Roland, et al., G-Cubed, 2010!
!
!



Transform Fault Thermal Structure!
Behn, et al., Geology, 2007!
Roland, et al., G-Cubed, 2010!
!
! No significant change in AT from including effects of:!

•  brittle behavior, !
•  temperature-dependent rheology, !
•  shear heating!
•  hydrothermal cooling !
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Scaling between Tectonic and Seismic Parameters!
Boettcher and Jordan, JGR, 2004!
!Tectonic Parameters (L, V, & AT)!
65 Ridge Transform Faults !
L ≥ 75 km (totaling≈16,000 km)!

Seismic Parameters (MC and ΣM)!
ISC Catalog 1964-1999 !
Global CMT 1976-2001!
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(Kagan and Jackson, 2002, GJI)!

MC!

ΣM = µAD!



Scaling between Tectonic and Seismic Parameters!
Boettcher and Jordan, JGR, 2004!

Effective Area of Seismic Slip!
ΣM = μAD!
ΣM/t = μAE(D/t)!
AE = ΣM/(tμV)!

Area of Ridge Transform Fault!
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ΣM = μAD!

Yes!  On average, 85% of the plate motion is aseismic!
(or ~65% of the plate motion between 200˚C and 600˚C)!

Is there aseismic creep above the 600˚C isotherm during the seismic cycle?!
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Scaling between Tectonic and Seismic Parameters!
Boettcher and Jordan, JGR, 2004!

MC!

Rupture Area of Largest 
Expected Event!
AC = MC/μDC!
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Area of Ridge Transform Fault!

No… and furthermore AC scales as AT
1/2!

!(equivalently, MC scales as AT
3/4) !

Will the largest expected event (MC) rupture the total fault area?!
!



Scaling between Tectonic and Seismic Parameters!
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RTF Magnitude Frequency Distribution!
Boettcher and McGuire, GRL, 2009!

Data: 2002-2009 RTF        
earthquakes!



•  No aseismic slip!
•  Largest earthquake 

ruptures the entire fault!

•  85% of slip is aseismic!
•  Largest earthquake 

ruptures the entire fault!

RTF Magnitude Frequency Distribution!
Boettcher and McGuire, GRL, 2009!

Data: 2002-2009 RTF        
earthquakes!

!
Predicted Distributions:!

•  tapered Gutenberg-
Richter distribution!

•  RTF L’s & V’s!



Observed Scaling Relations:!
85% of slip is aseismic!

The largest expected 
earthquake scales as the fault 
area to the 3/4 power!

Predicted Magnitude Frequency Distribution!!
Boettcher and McGuire, GRL, 2009!

Data: 2002-2009 RTF        
earthquakes!

!
Predicted Distributions:!

•  tapered Gutenberg-
Richter distribution!

•  RTF L’s & V’s!



How is slip accommodated on Oceanic Transform Faults?!
Boettcher and Jordan, JGR, 2004; Boettcher and McGuire, GRL, 2009!
!
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How is slip accommodated on Oceanic Transform Faults?!
Boettcher and Jordan, JGR, 2004; Boettcher and McGuire, GRL, 2009!
!
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Do the largest RTF earthquakes repeatedly rupture the same fault patch?!



1.  Global predictability of earthquake distributions based on scaling relations!
2.  Long-term predictability as evidenced by stable seismic cycles!
3.  Short-term Predictability as evidenced by foreshocks!
!

Oceanic Transform Fault Seismicity: 
Relatively Predictable Earthquakes 



Earthquake Cycles: Elastic Rebound Theory 
e.g. Reid, 1910 

• Timing of the next earthquake 
depends on the amount of slip 
since the last one !

•  Implies full seismic coupling!

• Difficult to verify due to long 
seismic cycles (50-1000 years) 
and complex fault systems!



Fast slipping EPR faults have 
VERY short and stable 
seismic cycles!!
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Long Term Predictability- 
Stable Seismic Cycles!
McGuire, BSSA, 2008!
Boettcher and McGuire, GRL, 2009!
McGuire et al., Nature Geoscience, 2012!



Long Term Predictability- Stable Seismic Cycles!
McGuire, et al., Nature Geoscience, 2012!

!

2008 Ocean Bottom Seismic 
experiment on Gofar, 
Discovery, & Quebrada!
!
And the Sept. 18th, 2008 MW 
6.0 earthquake sequence!!



Long Term Predictability- Stable Seismic Cycles!
Boettcher and McGuire, GRL, 2009!

!
! Blanco Transform Fault!

~13.5 year seismic cycles!!



Long Term Predictability- Stable Seismic Cycles!
!

 

Clipperton Transform Fault!

~20 year seismic cycles!!



Short Term Earthquake Predictability- Foreshocks!
McGuire, et al., Nature Geoscience, 2012!

!

>20,000 foreshocks in the week before the M6!!



Short Term Earthquake Predictability- Foreshocks!
McGuire, et al., Nature Geoscience, 2012!

!
Foreshocks are abundant 
and localized!!



Short Term Earthquake Predictability- Foreshocks!
McGuire, et al., Nature Geoscience, 2012!

!

Foreshocks are deep!!



9 Mw ≥ 5.5, Mar. 1996 - Nov. 2001!

ofar!

iscovery! uebrada!

Short Term Earthquake Predictability- Foreshocks!
McGuire, et al., Nature, 2005!

!



± 20 hours!

± 2 hours!

Stack of the 9 mainshocks!

Short Term Earthquake Predictability- Foreshocks!
McGuire, et al., Nature, 2005!

!



± 20 hours!

± 2 hours!

Stack of the 9 mainshocks!

M ≥ 5.5 earthquakes 
on QDG are preceded 
by a foreshock within 
one hour and 15 km!

Short Term Earthquake Predictability- Foreshocks!
McGuire, et al., Nature, 2005!

!



Are foreshocks, mainshocks, and aftershocks all triggered 
in the same way (e.g. ETAS)?!
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“Pre-Slip Model”!

Short Term Earthquake Predictability- Foreshocks!
!



Observations of Seismic Cycles on Oceanic Transform Faults!

• Regular, Short (≥5 years) 
seismic cycles!!

•  Large events repeatedly re-
rupture the same fault patch!

• Ruptures donʼt rupture 
multiple patches, even within 
fault segments!

•  Foreshocks precede most(?) 
large earthquakes on fast 
slipping transform faults!

•  The size of these largest 
earthquakes are also 
predictable from the fault 
thermal area (L & V)!
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A model of slip on Ridge Transform Faults:!
➔ Single-mode fault patches separated by regions of multi-mode slip!
➔ Fault zone frictional properties vary along strike, possibly due to high 
levels of fluid circulation in rupture barriers!

“Single-Mode”!“Multi-Mode”!
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➔ Creep may play an important role in driving seismic cycles on RTFs!
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