Understanding slip on oceanic transform faults through observations from the lab to the fault scale

Margaret Boettcher, University of New Hampshire CIG Workshop, Golden CO, June 2012

Oceanic Transform Faults are Relatively Simple

- 1. Simple Geometry (well defined length & slip rate)
- 2. Long-lived with large cumulative offsets
- 3. Simple Composition: Gabbro, Peridotite, and alteration phases (e.g. serpentine and talc)

Courtesy of NOAA Ocean Explorer

Frictional Stability of Oceanic Crust

He, et al., Tectonophysics, 2007; Moore et al., Int. Geology Review, 2004; Moore & Lockner, 2008

Serpentine- Moore et al., 2004

- Gabbro and Serpentine are velocity weakening at T > \sim 200°C;
- Talc is always velocity strengthening

0.010

0.005

0.000

-0.005

-0.010

-0.015

-0.020

-0.025

a-b=∆µ/∆In(V)

Frictional Stability of Oceanic Mantle

Boettcher, et al., JGR, 2007

Where is the boundary between potentially seismogenic conditions and those that will only produce stable slip?

Abercrombie and Ekström, Nature, 2001

Starting Material

Experimental Conditions

Sample Material: olivine powder < 60 μ m Temperature: 600, 800, & 1000°C Pressure: 50, 100, 200, & 300 MPa Pore Fluids: dry=argon & wet=water Loading Rate: 0.06 to 60 μ m/s Strain Rate: 3e-6 to 3e-3 s⁻¹

(V = 30 mm/yr \rightarrow strain rate of 1e-12 s⁻¹)

Frictional Stability of Oceanic Mantle

Boettcher, et al., JGR, 2007

Where is the boundary between potentially seismogenic conditions and those that will only produce stable slip?

Starting Material

Abercrombie and Ekström, Nature, 2001

Frictional Stability of Oceanic Mantle

Boettcher, et al., JGR, 2007

Frictional Stability of Oceanic Mantle-Creep at Asperities

Boettcher, et al., JGR, 2007

The time and rate dependent processes result from creep of the surface contact and a consequent increase in the real area of contact over time.

Frictional Stability of Oceanic Mantle Boettcher, et al., JGR, 2007

$$\sigma_{A} = \sigma_{P}(1 + (\text{RT In}(\hat{\epsilon}) / \text{HB}))^{1/c}$$

(Goetze, 1978)

 σ_A = Asperity Stress σ_P = Peierl's Stress R = Gas Constant T = Temperature H = Activation Enthalpy q, B = Empirical Constants

Oceanic Transform Fault Rheological Model:

Oceanic Transform Fault Seismicity: Relatively Predictable Earthquakes

- 1. Global predictability of earthquake distributions based on scaling relations
- 2. Long-term predictability as evidenced by stable seismic cycles
- 3. Short-term Predictability as evidenced by foreshocks

Scaling between Tectonic and Seismic Parameters

Predictable Fault Thermal Structure: Half-space cooling model: $A_T = C_{ref} L^{3/2} V^{-1/2}$

Transform Fault Thermal Structure

Transform Fault Thermal Structure

Behn, et al., Geology, 2007 Roland, et al., G-Cubed, 2010

No significant change in A_T from including effects of:

- brittle behavior,
- temperature-dependent rheology,
- shear heating
- hydrothermal cooling

Scaling between Tectonic and Seismic Parameters

Boettcher and Jordan, JGR, 2004

Tectonic Parameters (L, V, & A_T)

65 Ridge Transform Faults L ≥ 75 km (totaling≈16,000 km)

Seismic Parameters (M_c and ΣM) ISC Catalog 1964-1999 Global CMT 1976-2001

$$N(M) = N_0 \left(\frac{M_0}{M}\right)^3 \exp\left(\frac{M_0 - M}{M_c}\right)$$

(Kagan and Jackson, 2002, GJI)

Is there aseismic creep above the 600°C isotherm during the seismic cycle?

Yes! On average, 85% of the plate motion is aseismic (or ~65% of the plate motion between 200°C and 600°C)

Effective Area of Seismic Slip $\Sigma M = \mu A D$ $\Sigma M/t = \mu A_F(D/t)$ $\boldsymbol{A}_{\boldsymbol{E}} = \boldsymbol{\Sigma} \boldsymbol{M} / (\boldsymbol{t} \boldsymbol{\mu} \boldsymbol{V})$ 6.5 5.5 Cumulative Number of Events $\Sigma M = \mu A D$ 10¹ 10 10¹⁸ 10²⁰ 10¹⁹

Seismic Moment (Nm)

Is there aseismic creep above the 600°C isotherm during the seismic cycle?

Yes! On average, 85% of the plate motion is aseismic (or ~65% of the plate motion between 200°C and 600°C)

Will the largest expected event (M_c) rupture the total fault area?

Will the largest expected event (M_c) rupture the total fault area?

RTF Magnitude Frequency Distribution Boettcher and McGuire, GRL, 2009

Data: 2002-2009 RTF earthquakes

RTF Magnitude Frequency Distribution Boettcher and McGuire, GRL, 2009

Predicted Magnitude Frequency Distribution! Boettcher and McGuire, GRL, 2009

Data: 2002-2009 RTF earthquakes

Predicted Distributions:

- tapered Gutenberg-Richter distribution
- RTF L's & V's

Observed Scaling Relations:

85% of slip is aseismic

The largest expected earthquake scales as the fault area to the 3/4 power How is slip accommodated on Oceanic Transform Faults? Boettcher and Jordan, JGR, 2004; Boettcher and McGuire, GRL, 2009

How is slip accommodated on Oceanic Transform Faults? Boettcher and Jordan, JGR, 2004; Boettcher and McGuire, GRL, 2009

Do the largest RTF earthquakes repeatedly rupture the same fault patch?

Oceanic Transform Fault Seismicity: Relatively Predictable Earthquakes

- 1. Global predictability of earthquake distributions based on scaling relations
- 2. Long-term predictability as evidenced by stable seismic cycles
- 3. Short-term Predictability as evidenced by foreshocks

Earthquake Cycles: Elastic Rebound Theory e.g. Reid, 1910

- Timing of the next earthquake depends on the amount of slip since the last one
- Implies full seismic coupling
- Difficult to verify due to long seismic cycles (50-1000 years) and complex fault systems

Figure 13-1 part 2b Understanding Earth, Fifth Edition © 2007 W. H. Freeman and Company

Long Term Predictability-Stable Seismic Cycles

McGuire, BSSA, 2008 Boettcher and McGuire, GRL, 2009 McGuire et al., Nature Geoscience, 2012

Fast slipping EPR faults have VERY short and stable seismic cycles!

Server Predictability- Stable Seismic Cycles Network et al., Nature (Support (Suppo

Long Term Predictability- Stable Seismic Cycles Boettcher and McGuire, GRL, 2009

Long Term Predictability- Stable Seismic Cycles

~20 year seismic cycles!

Short Term Earthquake Predictability- Foreshocks

McGuire, et al., Nature Geoscience, 2012

Short Term Earthquake Predictability- Foreshocks

McGuire, et al., Nature Geoscience, 2012

Foreshocks are abundant and localized!

Short Term Earthquake Predictability- Foreshocks McGuire, et al., Nature, 2005

9 Mw ≥ 5.5, Mar. 1996 - Nov. 2001

Short Term Earthquake Predictability- Foreshocks McGuire, et al., Nature, 2005

Stack of the 9 mainshocks

Short Term Earthquake Predictability- Foreshocks McGuire, et al., Nature, 2005

Stack of the 9 mainshocks

 $M \ge 5.5$ earthquakes on QDG are preceded by a foreshock within one hour and 15 km Short Term Earthquake Predictability- Foreshocks

Are foreshocks, mainshocks, and aftershocks all triggered in the same way (e.g. ETAS)?

"Pre-Slip Model"

Observations of Seismic Cycles on Oceanic Transform Faults

- Regular, Short (≥5 years) seismic cycles!
- Large events repeatedly rerupture the same fault patch
- Ruptures don't rupture multiple patches, even within fault segments
- Foreshocks precede most(?) large earthquakes on fast slipping transform faults
- The size of these largest earthquakes are also predictable from the fault thermal area (L & V)

A model of slip on Ridge Transform Faults:

→ Single-mode fault patches separated by regions of multi-mode slip

→ Fault zone frictional properties vary along strike, possibly due to high levels of fluid circulation in rupture barriers

→ Creep may play an important role in driving seismic cycles on RTFs

