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Slow slip events (in Cascadia)

Peng and Gomberg, 2011
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Peng and Gomberg, 2011

Which friction law is appropriate?

+ Standard velocity-weakening friction
with tuned size

+ Dilatancy

 Velocity-weakening to -strengthening
friction

- All can produce episodic slow slip
- All require tuning

- But can they reproduce all of the
observed features of slow slip?

Here: Try to understand slow slip
events simulated with a friction law
with a velocity-weakening to
-strengthening transition.

* Model motivation and setup
* Model predictions

- Steady propagation

- Stress drops

Gradual modulation due to
tidal forcing
Back-propagating fronts



Rate and state friction

. ) a < b, evolution effect dominates,
frictional strength = f(slip rate V, state 6)

earthquakes
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steady sliding
- accounts for adhesion at individual asperities

- larger for steady slip at higher slip rates 0.62

bin (‘%’): evolution effect

- accounts for number and size of asperities

- at larger slip rates, longer asperity lifetime,
larger contact area 058

- smaller for steady slip at higher slip rates




One constitutive law for episodic slow slip

frictional strength = f(slip rate V, state 0)

% V.
7(V,0) = constant+ac In { — | +boIn ﬁ—H
% D¢

In theory and experiments, this law results
from a lower limit on the size of asperities
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Need equations for state evolution

aging law slip law
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velocity-weakening at low slip
rates, velocity-strengthening at
high slip rates



Model geometry

V=0
Iuniform stress Model slip along center line T W
along dip |
‘ slip direction
V:Vplate

May 2008 ETS
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« Slow slip events often extend farther
along strike than along dip
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» Use one point per along-strike distance il
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+ Assume stress is uniform along dip
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3,677 epicenters, 227 hours
Wech et. al., 2009



Simulated slow slip events

Model does produce
episodic slow slip events
+ Slip rates around V¢,
100 times plate rate

+ Episodic large events
with a number of small
events between
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Steady propagation

Events propagate steadily
along strike
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Tremor observations

Along-strike evolution of five ETS events
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Steady propagation

Events propagate steadily

along strike

‘ :

dlstance along strike over W

ogm(velocny / loading rate)

uniform stress Model slip along center line T

along dip

Uniform stress drop slip profiles

slip/(WAT(1-v)/p)

With the strip model geometry, points don'’t
feel slip at locations much more than W away.

This makes a steady solution possible.

V=0
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slip direction
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Steady velocity and stress profiles

+ Most of the slip accumulates in a region behind the

§° front somewhat smaller than the updip-downdip

g length W

s + Velocity profiles resemble asymmetric tremor
density

snapshots aligned on maximum stress
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Steady velocity and stress profiles

purple: unbroken, well-healed
pink: strongly slip-weakening
region, above steady state
yellow: gradually decaying stress,
near steady state
- Specific to this friction law
- Know stress-velocity relation in
this region
green: low-stress, below steady
state
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Conclusions to this point

+ Simulations exhibit many small events as well as periodic large
events

 Large events propagate steadily “along strike” with the strip model



Recurrence intervals: energy balance

scontrolled by the ability of events to propagate, not by nucleation.
snapshots aligned on maximum stress
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Recurrence intervals: energy balance

scontrolled by the ability of events to propagate, not by nucleation.

snapshots aligned on maximum stress
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strain energy release rate G = energy dissipated by friction (fracture energy G¢)
constant x stress drop x slip ~ near-tip contribution + gradual decay contribution

%AT (Ar%) ~ boD; x evolution-law-dependent constant

2
At ¢/b0\/ & where Lp = Dcﬂ
w bo

b = evolution effect coefficient, v» = geometric factor,
D = slip distance for state evolution, 1« = shear modulus



Recurrence intervals: simulation results

aging law

stress drop over bo

stress drop over bo

200
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downdip length over Lb

Schmidt and Gao, 2010

Observed along-dip
length W: 50-100 km

Observed stress
drops: 10-100 kPa
slip x pu/(1—v)/W =
2cm x 40 GPa/ 2l
50 km = 15 kPa

" Traditional
Earthquakes
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Required model parameters:
+ Slip law: D¢bo ~ 3 — 200 Pa-m
» Aging law: D¢bo ~ 0.3 — 20 Pa-m
For the slip law, b = 0.01
* For D; = 10 um: o ~ 30 MPa - 1 GPa
» For D; = 100 um: o = 3 MPa - 200 MPa
e For D = 1 mm: ¢ ~ 0.3 MPa - 20 MPa

bo D¢ ~



Conclusions to this point

+ Simulations exhibit many small events as well as periodic large
events

+ Large events propagate steadily “along strike” with the strip model

« Stress drops controlled by ability to propagate long distances along
strike

- Understood with an energy balance approach



Effect of a tidal forcing
Tides introduce a gradual modulation of the

slip rate.
Larger tidal stress = faster slip, with some
complications from the friction law

)

« More modulation in shallower portions of the steady
state curve, at lower slip rates

* More modulation when there is enough slip in each

3 period for state evolution, at higher slip rates
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Effect of a tidal forcing
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» Modulation of slip in Cascadia A;: + 30%
« Tidal stress on the interface: +£0.5 to 1.5 kPa
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Matching tidal forcing and recurrence interval simultaneously?

35 . . . i

30 alb

25- [ stress drop (kPa)
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modulation near steady state «— — modulation without state evolution
large W/ Ly, periodic events «— — small W/L,, aperiodic events

+ Possible to match 10 kPa stress drop and 30% modulation with the aging law
» But not 30 kPa stress drop and 30% modulation
» More difficult to match the observations with the slip law

- Slip law preferred by experiments for frictional energy dissipation estimates—for
our stress drop estimates

« Lines terminate when they leave the regime that allows for periodic steadily
propagating events



Conclusions to this point

+ Simulations exhibit many small events as well as periodic large
events

+ Large events propagate steadily “along strike” with the strip model

« Stress drops controlled by ability to propagate long distances along
strike

- Understood with an energy balance approach

+ Tidal forcing results in a gradual modulation of the slip rate behind
the propagating front

+ Difficult to match the observed stress drops and tidal modulation
with the slip law



Back-Propagating Fronts
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Back-Propagating Fronts
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Back-Propagating Fronts

» From tidal forcing
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Back-Propagating Fronts: Maximum Slip Rates

strain energy release rate G = energy dissipated by friction (fracture energy Gc)
constant x stress drop x slip &~ near-tip contribution + gradual decay contribution
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Back-Propagating Fronts: Propagation Rates
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Conclusions 1

+ Simulations exhibit many small events as well as periodic large
events

» Large events propagate steadily “along strike” with the strip model

+ Stress drops controlled by ability to propagate long distances along
strike

- Understood with an energy balance approach

+ Tidal forcing results in a gradual modulation of the slip rate behind
the propagating front

« Difficult to match the observed stress drops and tidal modulation
with the slip law

+ Heterogeneity in moment rate smaller than in observed events
» Back-propagating fronts arise

- Can understand their maximum and propagation velocities with
an energy balance approach
- Propagate too slowly to match the observed fronts



Conclusions 2: Shortcomings of the model
Can we throw out this constitutive law as an explanation for slow slip?
Problem 2: Lack of large variation in moment rate,

Problem 1: Matching amplitude of

05

modulation and stress drops

-01{s

velocity /(V/2)

Modulation depends strongly on
steady state stress: choose a
different curve?

- Probably acceptable for
experiments

- This curve has theoretical
support

- Aflatter curve could mean large
changes in propagation velocity
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Include heterogeneity in friction parameters, normal

stress?

- Need to preserve constant along-strike
propagation
- Would likely influence tidal modulation
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comparable to the overall stress drop
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Matching heterogeneity
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Evolution of stress and velocity
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Evolution of stress and velocity
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Effect of a tidal forcing
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