CIG's Activities in and Impact on Mantle Convection Studies

Shijie Zhong

Department of Physics University of Colorado at Boulder

CIG Workshop, Pasadena, 2009

Outline

- 1) Community-building/driven Activities (workshops, working groups, and codes).
- 2) Impact on mantle convection studies (25 one-pagers).
- 3) Challenges and future outlook.

<u>Community-building/driven</u> <u>activities:Workshops</u>

- Mantle convection workshop at CU-Boulder in June, 2005 (organized by Kellogg, Lenardic, Parmentier & Zhong).
 Defined the community needs (codes, benchmark, ...)
- Compressible mantle convection at Purdue in April, 2006 (organized by King & Zhong).
- Mantle/lithospheric dynamics workshop at UC-Davis in July, 2008 (organized by Billen, Becker, King, & van Wijk).
- Adaptive mesh refinement at CU-Boulder in October, 2007 (organized by Bangerth & Zhong).

Community-Driven activities: Working groups

- On compressible mantle convection (King, van Keken, Gurnis, Moresi, Tan, Zhong, ...).
- On development of 1-D analytical codes (Becker, Steinberger and others).
- On acquisition of various convection codes.

Mantle Convection Codes: Available at CIG

• CitcomS (3D spherical convection: compressibility, thermochemical, and non-Newtonian rheology, ...)

Latest release version 3.0.3 in September, 2008

• CitcomCU (3D Cartesian and regional spherical)

Latest release version 1.0.2 in May, 2007.

• Ellipsis3d (3D Cartesian)

Latest release version 1.0.2 in April, 2007.

• ConMan (2D Cartesian)

Latest release in September, 2008.

Community-Driven activities: Benchmark efforts

ZHONG ET AL.: BENCHMARKS OF 3-D SPHERICAL CONVECTION MODELS 10.1029/2008GC002048

- Extensive benchmark of incompressible CitcomS (Zhong et al., G^3, 2008).
- Benchmark of compressible CitcomS (Tan et al., in preparation).
- Cartesian 2-D/3-D
 compressible convection
 (King, and other 5 groups,
 a poster at Fall AGU 2008).

Outline

- 1) Community-building/driven Activities (workshops, working groups, and codes).
- 2) Impact on mantle convection studies (25 one-pagers).
- 3) Challenges and future outlook.

- 1) Enabling (direct) linkage between mantle convection and seismic observations and mineral physics
- Bower, D.J., M. Gurnis, J.M. Jackson, and W. Sturhahn, Enhanced Convection and Fast Plumes in the Lower Mantle Induced by the Spin Transition in Ferropericlase
- Bull, A., A. McNamara, and J. Ritsema, Synthetic tomography of plume clusters and thermochemical piles
- Conrad, C., and M. Behn, Global Mantle Flow and the Development of Seismic Anisotropy
- Garnero, E., T. Lay, and A. McNamara, Implications of lower mantle structural heterogeneity for existence and nature of whole mantle plumes

Examples: Enabling (direct) linkage between mantle convection and seismic observations and mineral physics

Garnero, Lay, and McNamara

Bower et al.

Conrad and Behn

Examples: Enabling (direct) linkage between mantle convection and seismic observations and mineral physics

Bull, McNamara and Ritsema

2) Mantle convection and Earth's tides and gravity

Métivier, L., and C. Conrad, Body
 Tides of a Convecting, Laterally
 Heterogeneous, and Aspherical Earth

• Ghosh, A., T. Becker, and S. Zhong, Effect of lateral viscosity variations on mantle flow and the geoid

3) Mantle convection and geological history of dynamic topography and sea level change

- Conrad, C., and L. Husson, Influence of Dynamic Topography on Sea Level and its Rate of Change
- DiCaprio, L., M. Gurnis, R.D. Müller, and E. Tan, History of the Australian region since the Cretaceous: Assimilation plate tectonic data into a regionally-globally coupled geodynamic model
- Liu, L., S. Spasojevic, and M. Gurnis, Reconstructing Farallon Plate Subduction beneath North America back to the Late Cretaceous
- Liu, L., and M. Gurnis, Simultaneous inversion of mantle properties and initial conditions using an adjoint of mantle convection
- Spasojevic, S., M. Gurnis, and R. Sutherland, Inference of mantle properties with an evolving dynamics model of the Antarctica-New Zealand region
- Spasojevic, S., L. Liu, and M. Gurnis, North America regional sea level since the Late Cretaceous from adjoint convection models

Examples: Mantle convection and geological history of dynamic topography and sea level change

Liu, Spasojevic, & Gurnis

DiCaprio, Gurnis, Müller, Tan

Conrad & Husson

4) Planform of mantle convection and dynamics of plate tectonics

- Conrad, C., and C. Lithgow-Bertelloni, *Influence of Continental Roots and Asthenosphere on Plate-Mantle Coupling*
- Foley, B.J., and T.W. Becker, Generation of Plate Tectonics and Mantle Heterogeneity from a Spherical, Visco-plastic Convection Model
- Höink, T., and A. Lenardic, Three-dimensional mantle convection simulations with a low-viscosity asthenosphere
- Tan, E., W. Leng, S. Zhong, and M. Gurnis, *The convection planform of a dense chemical layer with higher bulk modulus*
- Zhong, S.J., N. Zhang, Z.X. Li, and J.H. Roberts, Very Long-wavelength Convection, True Polar Wander and Supercontinent Cycles

Examples: Planform of mantle convection and dynamics of plate tectonics

Höink & Lenardic

Foley & Becker

Zhong, Zhang, Li, & Roberts

5) Dynamics of downwellings and upwellings

- Burkett, E., and M. Billen, 2D Dynamics of Slab Detachment Due to Ridge-Trench Collision
- Jadamec, M., and M. Billen, Mantle Flow at a Subduction-Transform Plate Boundary
- Manea, V., and M. Gurnis,
 Reconstructing of Flat Slab Subduction
 and Detachment beneath Central Mexico
- Zhong, S.J. and W. Leng, Constraints on thermochemical convection of the mantle from plume heat flux, plume excess temperature and upper mantle temperature

Jadamec and Billen

6) Other Planets (Mercury & Mars)

- King, S.D., More Thoughts on Tharsis Rise Mars and Small-Scale Convection
- King, S.D., Unusual Pattern of Convection in a Thin Mantle Shell and the Connection to Tectonics on Mercury
- Roberts, J.H., R.J. Lillis, and M. Manga, Giant impacts on early Mars and the cessation of the Martian dynamo
- Zhong, S.J., Migration of Tharsis volcanism on Mars caused by differential rotation of the lithosphere

Examples: Other planets

King

Zhong

Outline

- 1) Community-building/driven Activities (workshops, working groups, and codes).
- 2) Impact on mantle convection studies (25 one-pagers).
- 3) Challenges and future outlook.

Multi-scale (from 10° km to 10⁴ km) Physics

Nonlinear and Highly Variable Rheology

- 1) Faulting and Plastic deformation: nonlinear
- 2) Highly temperaturedependent viscosity for silicate mantle (up to 3 orders of magnitude variations in plumes and downwellings).

Ongoing and Future Developments

- Better treatment of multi-scale processes (both physics and numerics).
- Adaptive mesh refinement (AMR) [Davies & Davies, 2008; Leng & Zhong, 2008 2D studies; Bangerth's deal-II].
- Efficient AMR on ~60K cores [Burstedde et al., 2008 – a collaborative effort by UT-Austin, Caltech, & UC-Boulder]

•

A new code: Rhea (octree-based AMR & massively parallel; local resolution to 1.5 km!)

Burstedde et al. [2008]