Long Term Tectonics Discussion Points

T. Ehlers and 10 others

Long Term Tectonics Scientific Challenges for CIG-II

- Coupling GALE with Magma Dynamics
 - E.g. Simulate melt generation as a function of rifting, subduction.
 - Problems = where the melt go and how does it influence deformation?
 Can we predict melt composition also? Quantify magma-solid interactions.
- Coupling GALE to Surface Processes
 - Need to implement current methods for mass removal, transport, deposition, paleoclimate simulations
- Application of GALE to Ice/Sheets, glacial flow problems.
 - Need to be able to use GALE on top of a complex boundary (topography).
 - Solve short and long-timescale problems. (e.g. predict erosion of glacial interglacial cycles, compare to geodetic observations).
 - Challenges: Sub ice hydrology, ocean-ice interactions, glacial lakes.
- Grids Geology input: importing complex geometries into GALE.
- Coupling surface (lithosphere) with large scale mantle convection.

Long Term Tectonics Software Engineering Challenges for CIG-II

- Mainstreaming/implementation of:
 - Anisotropy, elasticity, preserving sharp faulted topography with time.
- Faulting in 3D
 - can this be done more efficiently?
- Facilitate input file generation:
 - Need a better method for user engagement with input.
 - Need options/choices visible in input process
 - Closer partnership between CIG-VPAC needed.
 - Program flow/documentation complex.

Long Term Tectonics Community Organization Challenges

- Longer, more in depth (developer) workshops.
 - Education on code structure needed.
 - Workshops for users to make their own plugins
 - Users showing success stories of GALE applications (e.g. how to set up more complex problems)
- Continue having shorter (introductory) workshops
- Visiting scientists program for working with developers (CIG and VPAC)