Magma Dynamics at CIG

Laurent G. J. Montési University of Maryland

Contributions from:

Marc Spiegelman (Columbia) Steve Quenette, David Lee (VPAC) Wolfgang Bangerth (Texas A&M)

Why Magma Dynamics?

- Probe into the mantle
 - Flux influenced by geodynamics (temperature, flow, pressure)
 - Composition depends on source and transport process
 - Complements geological and geophysical investigation

Influences mantle dynamics

- Differentiation / partitioning of heat producing elements
- Buoyancy of melt and residuum

Depth (km)

20 25 30

35

40

45 50

55

60

Melt distribution model underneath ultraslow ridges Montési, Hebert, Behn, Barry, 2009

A multiphysics problem

- Two-phase flow
- McKenzie 1984 formulation
 - Flow of melt controlled by Darcy's law
 - Compaction of matrix controlled by bulk viscosity
 - Stokes flow
- Additional complexity
 - Surface tension, grain boundary processes, viscoelasticity, failure, thermodynamics
- Use magma dynamics as testbed for multiphysics software

Granitic melt in quartz (Laporte et al. 1997)

10 µm

Magma equations

• Solve for ϕ , V, \mathcal{P} , P^* Mass Conservation $\frac{\partial \phi}{\partial t} + V \cdot \nabla \phi = (1 - \phi) \frac{\mathcal{P}}{\xi} + \frac{\Gamma}{\rho_s}$ Compressibility $\nabla \cdot V = \mathcal{P}/\xi$ Darcy/Helmholtz $-\nabla \cdot \frac{K}{\mu} \nabla \mathcal{P} + \frac{\mathcal{P}}{\xi} = \nabla \cdot \frac{K}{\mu} [\nabla P^* + \Delta \rho g] + \Gamma \frac{\Delta \rho}{\rho_f \rho_s}$ Stokes $\nabla P^* = \nabla \cdot \eta (\nabla V + \nabla V^T) - \phi \Delta \rho g$ Permeability $K = K_0 \phi^n$

Compute other variables

$$\phi v = \phi V - \frac{K}{\mu} \Big[\nabla \Big(P^* + \mathcal{P} \Big) + \Delta \rho g \Big]$$
$$P = \rho_s^0 g z + \mathcal{P} + P^*$$

Spiegelman, Katz, and Simpson, 2007

The MaDDs project

- Magma Dynamics Demonstration Suite
- 5 demonstration problems, described in online document at CIG
 - 1: 2D ridge / 3D segmented ridge (Stokes only)
 - 2: Constant porosity ridge (Stokes + Darcy)
 - 3: Shear bands
 - 4: Solitary wave (Darcy flow + compaction)
 - 5: Coupled ridge, forced melting
- Test several software libraries / platforms
- No "Gold Standard" code!

MaDDS platforms / software

- stgMaDDS project
 - David Lee (VPAC)
 - Based on StGermain
- Deal.II
 - Wolgang Bangerth (TAMU)
 - Adaptive mesh refinement

- MultiMaDDS:
 - Laurent Montési (Maryland)
 - COMSOL multiphysics[™]
- FEniCS/PETSc hybrid
 - Marc Spiegelman (Columbia)
 - Automatic code generation

MaDDS-2: Stokes flow and uniform porosity melt migration (COMSOL^{TM,} Montési.)

Status of stgMaDDS

- Most problems done
 - Stokes benchmark
 - Constant porosity ridge
 - Solitary wave
 - Ridge with melting
- Alpha version released through CIG's mercurial repository and StGermain project

Compaction pressure for MaDDS-5: Fully coupled 3D segmented isoviscous ridge with melting. (Quenette and Lee one-pager)

Evaluation of stgMaDDS

- It works, and you can get it!
 - Publically available software, parallel
 - In principle, compatibility with other StGermain-based applications (Underworld, SNAC, GALE)
- It wasn't easy!
 - Framework bring complexity
 - Solver flexibility
 - Performance/scalability?
- User base?

MaDDS-4: 3D solitary wave (Quenette and Lee one-pager)

Commercial multiphysics software

COMSOL Multiphysics[™]

- 3D Stokes Flow, Darcy flow, and Helmholtz equation all implemented
- Possibility of adaptive meshing (steady-state), ALE, other physics

Evaluation

- Great for small, rapid applications.
- Easy to learn, even with little numerical knowledge
- Can't tinker with solver

MaDDS-2 with COMSOL Multiphysics™ (Montési)

MultiMaDDS status

- MaDDS-1: Stokes solver
 - Higher order element
 - Unstructured mesh (ALE and AMR possible)
 - Stress and temperature dependent rheology (with Mark Behn)
- MaDDS-2: Stokes coupled with Darcy equation
- MaDDS-4: Solitary waves: Custom PDE and Helmholtz equation
- 2D and 3D

Stokes flow and uniform porosity melt migration with COMSOL Multiphysics™

FEniCS/PETSc hybrid

- Developed by Marc Spiegelman
- Automated code generation (FFC/Dolfin) and PDE-based block-preconditioners (PETSc)
- MaDDS 1, 2, 4 done; Preliminary MaDDS-5

MaDDS-2 with FEniCS/PETSc Stokes flow with corner flow boundary conditions Melt trajectory for constant porosity

MaDDS-4: Solitary wave (FEniCS)

Adaptive refinement

Deal.II (Bangerth)

- Existing Darcy flow tutorials
- Stokes flow tutorial complete: Step 22
- Compaction equation under development

Stokes flow for segmented ridge with adaptive refinement (Burstedde et al.)

Summary / Evaluation

- Multiphysics is a challenge!
 - No ideal solution
- StGermain
 - Flexible, but complex
 Newly adopted: Stay
- COMSOL Multiphysics[™]
 - Easy to use but impossible to modify
 Excellent tutorials
 - Limited to "small" problems

FEniCS/PETSc

- tuned!
- Deal.II
 - Flexible library

Possible future goals

Multiphysics coupling

- Mantle convection
- Tectonics
 - Rheology/failure
- Computational thermodynamics
- Adaptive refinement

Deal.ii step 22 adaptively refined mesh (Bangerth, 2008)

Mid-ocean ridge tectonics influences by dike intrusion Tucholke, Behn, Buck, 2008