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Promise of adaptivity

Invest computational work selectively
where it promises the highest gain in accuracy.

pros

I improve accuracy
runtime

I implement goal-oriented refinement
I mitigate curse of dimensionality
I turn intractable problems into tractable ones

cons

I non-trivial neighborhood relations
I non-trivial mesh partition
I non-trivial node ownership
I surplus of complexity costs development time
I surplus of topological operations costs runtime



Indications for adaptivity

Use adaptivity when error, energy, activity, . . .
is distributed non-uniformly in space.

less likely

I when multiscale behaviour permeates the domain
I when activity spreads through the whole system

more likely

I when spatial resolution increases
I when physical heterogeneity increases
I when quantities of interest are localized

examples

− Turbulence
? Wave propagation

+ Mantle convection

Growth in computing power points
towards the more likely regime?



Large scale adaptivity

static AMR (i.e., up-front adaptation)

I Mesh and parallel partition are known before program start
I Mesh setup can be precomputed and hand-optimized
I Cannot adapt to moving phenomena
I Change in setup can be costly

dynamic AMR (i.e., mesh changes over time)

I Additionally requires coarsening capability
I Mesh adaptation is integral part of the code
I Mesh adaptation occurs frequently
I Parallel repartition occurs frequently

Adaptivity algorithms need to be at least
as scalable as the numerical algorithms



Large scale adaptivity
mesh partitioning

I Each element is assigned to a unique processor core
I Distributed storage – no processor stores the whole mesh
I Numerical information exchanged between neighbor elements
I Connectivity information between elements known or stored

connectivity information – local

I Find neighbor elements
I Find owner processor of a neighbor
I Find degrees of freedom (DOF)

connectivity information – global

I Parallel partitioning – global redistribution of elements

Encode connectivity information with minimal storage

Types of adaptivity differ in choice of encoding



Types of adaptivity

local information (uniform mesh)
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find neighbors

#nx = #e + 1
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find owner
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find DOF

#q = q.x + (Nx + 1)q.y

global shared information: 4 integers Nx , Ny , Mx , My



Types of adaptivity

local information (unstructured mesh)

e

n0

n1
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q

P0

P1

P2

find neighbors

store e.n[3]

find owner

store e.P

find DOF

store #q

Loss of structure → loss of information
Required information must be stored



Types of adaptivity

block-structured AMR [1,2] unstructured AMR [3]

[1] E. Evans, S. Iyer, E. Schnetter et.al. 2005
[2] www.cactuscode.org
[3] www.openchannelfoundation.org/projects/Pyramid



Types of adaptivity

hierarchical triangles [1] hierarchical hexahedra

[1] M. Bader, S. Schraufstetter, C.A. Vigh, J. Behrens 2008



Parallel partitioning

partitioning – global exchange of information

I Operation: redistribute elements among processors
I Objective: miminize overall run time

useful criteria?

I Balance element counts between processors
I Balance node counts between processors
I Minimize number of neighbor processors
I Minimize number of elements on processor boundaries

tools available?

I Unstructured AMR: represent mesh connectivity as graph;
use graph-partitioning heuristics (NP-hard), e.g. Zoltan

I Hierarchic AMR: space filling curves (SFC)



Parallel partitioning

octrees and space filling curves (SFC)

Proc 0 Proc 1 Proc 2

I 1:1 relation between octree and SFC → efficient encoding
I Map a 1D curve into 2D or 3D space → total ordering
I Recursive self-similar structure → scale-free
I Tree leaf traversal → cache-friendly



Large scale adaptivity

octrees and space filling curves (SFC)

Proc 0 Proc 1 Proc 2

local information

I Find parent or children → vertical tree step O(1)
I Find on-processor neighbor → tree search O(log n

p )
I Find owner of off-processor neighbor → binary search O(log p)



Forest of octrees

a conforming macro-mesh of adaptive octrees

I Connectivity between octrees is interpreted purely topological
I Any # of octrees (= 6= 4) can connect through common edge
I Any # of octrees (= 6= 8) can connect through common corner
I 2:1 balance condition across faces, edges and corners

is honored within and between octrees (optional)



Octree-based parallel adaptive software

reinventing the wheel? (can be great fun! takes time though.)

I deal.II (W. Bangerth, R. Hartmann, G. Kanschat; general purpose)

I libMesh (G. Carey, D. Gaston, B. Kirk, J. Peterson, R. Stogner)

I AFEAPI (A. Patra et.al.)

I octor (T. Tu; closed source, pointer-based, ripple propagation)

I Dendro (R. Sampath; linear octree, insulation layers)

I p4est (C. Burstedde, L. C. Wilcox; forest of linear octrees)

Many of the headaches of parallel adaptivity
are happily encapsulated in a software library



deal.II

all-in-one finite element package

I Forest of octrees mesh topology

I Wealth of finite element spaces

I Problem assembly and linear algebra

I Direct and iterative numerical solvers

I Wealth of visualization formats

I Wealth of documentation

I Wealth of tutorials (including geodynamics!)

I Moderate parallelism (≈ 100 processor cores)

I Directly available for download (www.dealii.org)

Get up and running quickly



deal.II

fluid dynamics examples [1]

[1] W. Bangerth 2008



p4est

lightweight parallel adaptive mesh library (not a FE code!)

I Forest of octrees mesh topology

I Designed for uncompromised parallel scalability

I Almost arbitrary connectivity and periodicity of the domain

I Small memory footprint

local storage 24 bytes per element
global storage 32 bytes for each processor

I Ongoing work on integration into deal.II as mesh backend

I Ongoing work on generic FE mesh interface



p4est

2D scalings
Star-shaped domain, 6 trees, parallel efficiency of 2:1 balance
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Largest run: 6 trees, 32,768 cores, 74 billion elements



p4est

3D results
Spherical shell domain, 24 trees, parallel efficiency of 2:1 balance

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Efficiency of 2:1 Balance (3D, from 1)
Efficiency of 2:1 Balance (3D, from 4)

Largest run: 24 trees, 62,464 cores, 256 billion elements



Adaptivity and mantle convection

the Rhea code [1,2]

I Global adaptive mantle convection simulation

I Continuous trilinear elements for both velocity and pressure

I AMG preconditioned MINRES iterations for Stokes

I SUPG predictor-corrector time integration

I Spherical shell resolved with 24 octrees by p4est

I Scaled up to 16,384 cores on TACC/Ranger

[1] C. Burstedde, O. Ghattas, M. Gurnis, E. Tan,
G. Stadler, T. Tu, L. C. Wilcox, Z. Zhong 2008.
Finalist paper for the ’08 Gordon Bell Prize

[2] ongoing work



Adaptivity and mantle convection

the Rhea code – multigrid scalings [1]

#cores #dofs
MINRES

#iter
AMG
setup

AMG
V-cycle

1 170K 66 1.45 18.06
8 1.1M 76 1.60 22.91

32 4.6M 88 2.22 33.20
128 17.9M 81 3.41 30.22

2,048 294M 63 15.12 70.53
16,384 2.35B 71 26.91 84.96

I Sum of setup and V-cycle times increase by a factor of 5.5

I All other FE computations scale roughly linearly

[1] With ML solver from Trilinos



Adaptivity and mantle convection

the Rhea code – present day slab dynamics [1]

[1] ongoing work with L. Alisic, O. Ghattas, M. Gurnis, G. Stadler, L. C. Wilcox



Adaptivity and CIG

high-level code

I deal.II works up to small computer clusters
I deal.II works for uniform and adaptive meshes
I Worth considering when starting a new high-level code

technology transfer

I p4est creates new scalable technology
I This technology propagates, e.g. into deal.II
I Whoever uses these codes will benefit without extra effort

special purpose codes

I Codes that bring their own FE logic could use p4est
I Mesh management would need to be separated
I Active collaboration with code development on both sides


