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Outline (and basic theses to be substantiated)

1 The most difficult task: To find a solution!.

2 Once the solutions are found, evaluation of uncertainties is usually
relatively easy.

3 If the inversion algorithm has not converged properly to the
solution(s), this is the most significant source of uncertainty!

4 The futility of blind inversion - the use of general purpose algorithms.

5 Inversion algorithms built for the specific problem perform better!
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The most difficult problem:

To find a solution!
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The logic of Data Analysis M
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The logic of Data Analysis MM(p)
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The logic of Data Analysis MM(d )1 M(p)
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The logic of Data Analysis MM(d )1
M(d )2 M(p)
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The logic of Data Analysis MM(d )1
M(d )2 M(p)

M(s) = M(d ) « M(d ) « M(p) 1 2
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The Bayesian view

Define indicator functions:

Lj(m) =
{

1 if m ∈ M(dj)
0 otherwise

ρ(m) =
{

1 if m ∈ M(p)
0 otherwise

σ(m) =
{

1 if m is a solution
0 otherwise

then
σ(m) = L1(m) . . . LN (m)︸ ︷︷ ︸

L(m|d)

ρ(m)

“Softening” the indicator functions to probability densities leaves us with
Bayes’ Rule.
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The Deterministic view

Models consistent with one datum usually reside in a “narrow
neighbourhood” of a manifold with dimension

Dim(M)− 1

M
M(d )1
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The Deterministic view

Models consistent with N independent data usually reside in a “narrow
neighbourhood” of a manifold with dimension

Dim(M)−N

M
M(d )1

M(d )2

M(d « d )1 2
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The “Curse of Dimensionality”

The volume of the solution space decreases at least exponentially with the
number of independent data

Dimension
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Preliminary observations

Let
Dim(M) : Dimension of model parameter space
Dim(D) : Dimension of data space
Dim(P ) : Number of independent a priori constraints

Observation 1 Given the path to a point in the solution space, the
search time along the path is only weakly dependent on Dim(M),
Dim(D) and Dim(P ).

Observation 2
Given no information about the solution space, the random search time
increases at least exponentially with

Dim(M) + Dim(D) + Dim(P ) (1)

when Dim(M) ≥ Dim(D)
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Once the solutions are found, evaluation of
uncertainties, is usually relatively easy!
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Search and sampling
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Search and sampling
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Search and sampling
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Search and sampling
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If the inversion algorithm has not converged
properly to the solution(s), this is the most

significant source of uncertainty!
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Incomplete convergence
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The futility of blind inversion
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The question

Which one of the following general purpose algorithms is the most
efficient?

Simulated Annealing,

Metropolis Algorithm,

Random Search,

Rejection Sampling,

Genetic Algorithm,

Taboo Search,

Neighbourhood Algorithm,

. . .

?
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A different viewpoint:

Double-discrete Analysis of Inverse Problems
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Double-discrete data analysis

Here, we shall assume that model parameters are doubly discrete:

There is a finite number of model parameters (this is the usual
assumption in parameter estimation)
Model parameters can only take a finite number of parameter
values!

Figure: Original image, image with few pixels, and image with few color levels
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How fine a discretization is needed for an inverse problem?

The misfit function f(m) usually inherits continuity from d = g(m),
e.g.,

f(m) =
‖d− g(m)‖2

2σ2

Now we can define a grid of points representing small regions
∆m1∆m2 . . . of almost constant f(m).
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How fine a discretization of parameters values is needed?

Figure: The Victoria Crater in 256 colors, 16 colors, and 4 colors.
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Example: Seismic reflection data

∆mi < 2σ2ε/‖w‖2, where σ is the standard deviation of the noise, ε
is the desired fractional change in misfit over ∆mi, and w is the
seismic wavelet.
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The discrete counterpart to ”The Curse of Dimensionality”

The inverse problem:

d1 = g1(m1, m2 . . . , mM )
d2 = g2(m1, m2 . . . , mM )

...

dK = gK(m1, m2 . . . , mM )

Here, we can freely chose one out of N values for M −K model
parameters. This can be done in NM−K ways.

After this we have K equation with K unknowns left, and they may
have a solution in one, several or all of the above NM−K cases.

Proposition

The curse of combinatorics. K data reduce the solution space by a
factor ≤ N−K
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A Double-discrete Analysis of the Performance of
Inversion Algorithms
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The typical scenario for nonlinear inversion

In the relations
di = gi(m).

we have no closed-form mathematical expression for gi(m).
We only have a programme that is able to evaluate gi(m) for given
values of the parameters in m.

In short:

We are performing a blind search for the solution.
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Notation 1

Two finite sets X and Y ,

The set FX of all fit functions/probability distributions f : X → Y .
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Notation 2

A sample of size m < |X|:
{(x1, y1), . . . , (xm, ym)}.

The set FX|C of all fit functions/probability distributions defined on
X, but with fixed values in C.
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Proposition

The total number of functions intersecting the m samples is

|FX|C | = |Y ||X|−m. (2)

This number is independent of the location of the sample points.

The probability that an algorithm a sees the values y1, . . . , ym in the first
m steps is then

P (y1, . . . , ym|f, m, a) =
|Y ||X|−m

|Y ||X| = |Y |−m (3)

This number is independent of the algorithm.
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The No-Free-Lunch Theorem adapted to inversion

Theorem

NFL (Wolpert and Macready, 1995) For f ∈ FX and any pair of
algorithms a1 and a2,

P (y1, . . . , ym|f, m, a1) = P (y1, . . . , ym|f, m, a2) (4)

where P (·|·) denotes conditional probability.

Corollary

(NFL for optimization) When all fit functions are equally probable (blind
inversion), the distribution of any performance measure Φ(y1, . . . , ym) for
inversion is exactly the same for all inversion algorithms.

A simple performance measure for inversion could be
Φ(y1, . . . , ym) = max{y1, . . . , ym} which must be large for good
performance.
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Critique of the NFL theorem

Postulate

Our fit functions (misfit functions or probability densities) belong to a
narrow family of functions (e.g., smooth functions), and some algorithms
work better than others on such families!

So, the situation is different from the NFL-scenario:

We have a narrow set of functions (albeit unknown to the algorithm).

We can, however, extend the NFL Theorem to the following

Theorem
The average performance over all fit function families is exactly the same
for all inversion algorithms.
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Conclusion

The efficiency of all blind inversion schemes:

Simulated Annealing,

Metropolis Algorithm,

Genetic Algorithm,

Taboo Search,

Neighbourhood Algorithm,

. . . ,

when averaged over alle conceivable inverse problems, are exactly the
same.
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A final corollary

Corollary

Only an algorithm adapted to the specific problem has a chance of
performing better than a random search.

In fact, the following theorem can be demonstrated:

Theorem
A step length of 2n + 1, where n is the correlation distance of the fit
function, is optimally reducing the set of possible solutions.
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