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Introduction

My research is primarily concerned with the development of solvers for

large-scale multi-physics simulations.

• I focus on implicitly-coupled methods, typically resulting in the solution of

large-scale systems of nonlinear equations at each time step.

• Experience in extending legacy codes to include new physics/implicitness.

• Concerned with multi-scale problems in time, as opposed to problems with

multiple spatial scales [Bangerth, Ghattas, . . .].

• Application areas include

– Fusion: hydrodynamics + electromagnetics

– Astrophysics: hydrodynamics + radiation transport

– Cosmology: hydrodynamics + self-gravity + radiation transport +

chemical ionization kinetics

– Materials Science: nonlinear elasticity + thermodynamics
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Extended Example – Notation

We consider time evolution of a coupled (nonlinear) modeling system,

∂

∂t
U = F (U) + S(U),

where U contains the physical variables and F and S represent processes that

operate at different speeds, cfast and cslow, respectively, e.g.

• fast chemical reactions coupled with slower global diffusion

• stiff surface gravity waves in climate models

• stiff diffusion processes coupled with non-stiff advection

While many models admit easily-separable components, allowing approximation

through a variety of techniques (dropping terms, model reduction, steady-state

assumptions), modern science is deriving higher-fidelity models where those

simplifications become less clear (nonlinearities, complicated EOS, . . .).
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Explicitly-Coupled Multi-Physics Methods

Fully explicit, fixed step methods include the forward Euler method:

Un+1 = Un + ∆t [F (Un) + S(Un)] .

(+) The first approach in many multi-physics codes (simplest).

(+) High order accuracy possible through Runge-Kutta and explicit linear

multistep methods.

(−) ∆t is limited by the stability of the fastest physical process

∆tCFL ≤
∆xα

cfast
.

(−) Intractable for stiff calculations, in which cfast � cslow but overall

dynamics evolve at cslow.

(−) Cannot scale to very large problems, since ∆x → 0 ⇒ ∆t → 0.
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Multiple Time Step Coupling Methods

Basic multiple time step methods iterate (explicitly) on the fast dynamics.

Decomposing U = (Uf , Us) one may split up the physics to write:

Uf
n+(j+1)/k = Uf

n+j/k + ∆tf F
“
Uf

n+j/k, Us
n

”
, j = 0, . . . , k − 1

Us
n+1 = Us

n + ∆ts S
`
Uf

n+1, Us
n

´
.

• Typically ∆ts = c ∆tf , where c is some positive integer.

(+) Almost as simple as standard explicit methods.

(+) Not all terms need to be evaluated at each step.

(−) Splitting must be determined a priori.

(−) Even if ∆tf and ∆ts adhere to stability restrictions, can result in numerical

resonance instabilities [Grubmüller 1991; Biesiadecki & Skeel 1993].
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Coarse Projective Integration
Developed for problems with unknown microscale→macroscale constitutive laws.

Laws are computed on the fly by integrating the microscale equations directly.

1. lifting: create appropriate micro

model ICs from macro model.

2. evolution: explicitly evolve micro

model for some duration.

3. restriction: project the detailed

solution to macro variables.

4. projection: combine multiple mi-

cro solutions to take large step. [Gear et al., Comp Chem Engrg, 2002]

May be combined with the gap-tooth method for the patch dynamics approach.

Advantage lies in applicability to models for which no PDE is (yet) available,

e.g. kinetic Monte Carlo and molecular dynamics.

Projective integrators / Gap-Tooth Method: [Gear, Kevrekedis, Theodoropoulos, Lee, Samaey]
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Mixed Explicit & Implicit Coupling Methods

Mixed methods treat each component with a different solver, e.g.

Un+1 = Un + ∆t
ˆ
F (Un+1) + S(Un)

˜
.

• Prototypical “operator splitting”, since separated physics enables:

– leveraging of optimized legacy codes to a common purpose,

– optimal solvers (e.g. FFT) may be used on individual components,

• F is sometimes split into implicit and explicit parts, typically used so that

implicit piece is linear, and remainder is explicit [“linearly-implicit”].

• Requires a priori knowledge of easily-separable stiff & nonstiff parts.

• Typically low-order accurate, though higher-order in each component is

feasible [IMEX methods by Crouzeix 1980; Ascher et al. 1997].

• Often results in numerical instabilities purely due to the splitting that may

be difficult to identify/rectify [see talks by John Shadid & Don Estep].
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Implicitly-Coupled Methods

Implicitly-coupled approaches treat everything with an implicit method, e.g.

Un+1 = Un + ∆t
ˆ
F (Un+1) + S(Un+1)

˜
.

(−) May result in large-scale nonlinear problems, with possibly undesirable

structure (e.g. dense or non-symmetric matrices) −→ difficult to solve.

(+) May guarantee stability for arbitrary ∆t.

(+) Allows high accuracy solutions within and between variables.

(+) May be constructed using modern applied math toolkits,

e.g. PETSc, SUNDIALS, Trilinos, that

– have come a long way since “Numerical Recipes”,

– allow complicated data structures,

– enable specialized solver capabilities and interfaces to some of the

most scalable and efficient solver libraries in existence.

– (and they’re free)
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Implicit Solver Structure

Implicit systems are typically solved using a variant of Newton’s method:

• Let g(U) be the vector of all equations to be solved in a time step, e.g.

g(U) = U − Un −∆t [F (U) + S(U)] , g(U) = 0 ⇒ U ≈ U(tn+1).

• Newton solvers iterate to ‖g(U)‖ ≤ ε via: set U0 ≈ Un,

(i) solve J(Uk)δUk = −g(Uk) where J(U) = ∂
∂U

g(U)

(ii) update Uk+1 = Uk + λkδUk for 0 < λk ≤ 1

– ‖ · ‖ is a weighted norm, balancing multi-physics components

• Linear solvers for JδU = −g are typically iterative:

– Do not require matrix J, only its action, Jv ≈ [g(U + σv)− g(U)]/σ.

– Amenable to very large scale problems.

– May be combined with other solvers through preconditioner/smoother.

Newton: [Dembo et al. 1982; Kelley 1995; . . .] Krylov: [Saad & Schultz 1986; Greenbaum 1997; . . .]

Multigrid: [Brandt 1973; Tuminaro (talk); . . .] Schwarz: [Keyes 1989; Widlund 1989; . . .]
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Preconditioning

Preconditioner notes:

• Instead of J δU = −g, you solve (JP−1)(PδU) = −g or (P−1J) δU = −P−1g.

• Want P ≈ J for rapid convergence, but need P−1 efficient.

• Inaccuracies in P do not affect the accuracy of the nonlinear solution,

only the convergence properties of the linear solver.

Allows domain-specific knowledge back into the solver:

• Any a priori knowledge can help → may only need to treat stiff parts.

• Operator-split approaches may be used to separately attack different

components of J(U), allowing optimal solvers on individual processes.

• Legacy codes can be repurposed as preconditioners.

• Physical approximations (lagging, model reduction, . . .) may be

incorporated into P , enabling physical intuition while retaining accuracy.

Preconditioning Overview: [Knoll & Keyes 2005]
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Weak Scaling Limits
Assuming ideal-complexity algorithms (O(N)), quasi-uniform mesh size h,

spatial dimension d, and textbook CFL stability criteria, we estimate the

best case expected time E for weak scaling of various algorithms:

implicit: E ∝ N0 ∝ P 0 ∝ (1/h)0

explicit advection: E ∝ N1/d ∝ P 1/d ∝ (1/h)

explicit diffusion: E ∝ N2/d ∝ P 2/d ∝ (1/h)2
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Case Study – Magnetic Fusion

Resistive MHD provides the simplest fluid description of fusion plasmas. The

model couples the viscous, compressible Euler eqns (fluid flow – ρ, ρv, e) with

the low-frequency Maxwell equations (electromagnetic fields – B):

∂tρ +∇ · (ρv) = 0,

∂t(ρv) +∇ ·
“
ρvvT −BBT +

`
p + 1

2
B ·B

´
I
”

= ∇ · τ,

∂te +∇ ·
`
(e + p + 1

2
B ·B)v −B(B · v)

´
= ∇ · (τv + κ∇T )

+∇ ·
“
η

“
1
2
∇(B ·B)−B(∇B)T

””
,

∂tB +∇ ·
“
vBT −BvT

”
= ∇ ·

“
η∇B− η (∇B)T

”
.

Here e = p
γ−1

+ ρv·v
2

+ B·B
2

, T = p
ρ rgas

, and τ = µ
`
∇v + (∇v)T

´
− 2

3
µ(∇ · v)I.

Condensing notation, we rewrite this in terms of U = (ρ, ρv, B, e)T :

∂tU = −∇ · Fh(U) +∇ · Fd(U)
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Stiffness in Resistive MHD

Resistive MHD stiffness results from fast hyperbolic waves and diffusive effects.

The hyperbolic wave speeds are given by

λe = v (entropy wave)

λd = v (magnetic-flux wave)

λs = v ± cs (slow magnetosonic)

λa = v ±An (Alfvén waves)

λf = v ± cf (fast magnetosonic)

• For MHD, cs � An < cf , and typically cf ≈ 106.

• Moreover, diffusive (resistive, viscous) effects induce stiffness due to the

quadratic CFL condition ∆t ∝ ∆x2.

Coupling implicitly and using a standard N-K solver [SUNDIALS], we have

J(U) = I + ∆t ∂
∂U

[∇ · Fh(U)]−∆t ∂
∂U

[∇ · Fd(U)] = I + ∆tJh −∆tJd.

SUNDIALS: http://www.llnl.gov/casc/sundials/
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MHD Preconditioning

We employ an operator-splitting strategy for preconditioning, and set

P = PhPd = [I + ∆tJh] [I −∆tJd] = J +O(∆t2).

• Ph solves for the stiff wave effects within the hyperbolic subsystem.

– 8 coupled linear advection equations,

v + ∆t [A∂xv + B∂yv + C∂zv] = b.

– Split by direction and then decompose along characteristics.

– Solved using parallel tridiagonal solvers on structured spatial grids.

• Pd solves the remaining diffusive effects.

– 3 decoupled “heat-like” equations (1 scalar, 2 vector),

(I −∆t∇2)w = c.

– Solved using optimal geometric multigrid methods [HYPRE].

Ph: [R., Samtaney & Woodward, 2008]

Combined P : [R., Samtaney & Woodward, in prep.] HYPRE: http://www.llnl.gov/casc/hypre/

September 15, 2008 (16)



MHD Preconditioner Results
∆x Method CPU Time Nt

0.4 Exp 75 s. 1636

0.2 Exp 768 s. 3247

0.1 Exp 8214 s. 6493

0.05 Exp 80348 s. 12985

0.4 Imp 47 s. 1144

0.2 Imp 285 s. 1158

0.1 Imp 1817 s. 1075

0.05 Imp 14203 s. 1473

Explicit/Implicit time ratios: 1.6, 2.7, 4.5, 5.7

Explicit vs implicit (no P ) timings on Magnetic
Reconnection problem (above),

Weak CPU scaling using Ph preconditioner:
Kelvin Helmholtz test (corner),

Linear iterations using Pd preconditioner:
diffusion-dominated test (right).

[scaling tests run on LLNL Thunder cluster]
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Case Study – Cosmic Reionization

We consider the cosmological radiation-hydrodynamics-chemistry system,

∂tρb +
1

a
vb · ∇ρb = −

1

a
ρb∇ · vb,

∂tvb +
1

a
(vb · ∇)vb = −

ȧ

a
vb −

1

aρb
∇p−

1

a
∇φ,

∂te +
1

a
vb · ∇e = −

2ȧ

a
e−

1

aρb
∇ · (pvb)−

1

a
vb · ∇φ + G− Λ,

∂tni +∇ · (nivb) = −3
ȧ

a
ni − niΓ

ph
i + αrec

i,j nenj ,

∂tE +
1

a
∇ · (Evb)−

1

a2
∇ · (D∇E) = −4

ȧ

a
E + 4πη − ckE,

∇2φ = −
4πG

a
ρb,

coupling hydrodynamics (ρ,vb, e), species number densities (ni), grey radiation

energy density (E), and gravitational potential (φ). G and Λ correspond to

energy sources and sinks due to radiation and chemical couplings.

a(t) = 1
1+z

provides cosmological expansion, x = r
a(t)

is the comoving distance.
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Operator Split Multi-physics Approach – I

We wish to add radiation-chemistry physics to ENZO, an optimized code for

AMR hydrodynamics and self-gravity. Decomposing e = eh + ec, we have

∂t(eh + ec) +
1

a
vb · ∇e = −

2ȧ

a
(eh + ec)−

1

aρb
∇ · (pvb)−

1

a
vb · ∇φ + G− Λ.

In operator-split fashion, Enzo explicitly evolves one time step of the system:

∂tρb +
1

a
vb · ∇ρb = −

1

a
ρb∇ · vb,

∂tvb +
1

a
(vb · ∇)vb = −

ȧ

a
vb −

1

aρb
∇p−

1

a
∇φ,

∂teh +
1

a
vb · ∇eh = −

2ȧ

a
eh −

1

aρb
∇ · (pvb)−

1

a
vb · ∇φ,

∂tni +∇ · (nivb) = 0,

∂tE +
1

a
∇ · (Evb) = 0,

∇2φ = −
4πG

a
ρb.
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Operator Split Multi-physics Approach – II
We then tackle the remainder of the original system with an implicit approach,

∂tec = −2
ȧ

a
ec + G− Λ,

∂tni = −3
ȧ

a
ni − niΓ

ph
i + αrec

i,j nenj , (i, j = 1, . . . , ns)

∂tE =
1

a2
∇ · (D∇E)− 4

ȧ

a
E + 4πη − ckE.

An implicit discretization of this system results in a Jacobian of the form

J = I + ∆t

2664
Je,e Je,n Je,E

Jn,e Jn,n Jn,E

JE,e JE,n JE,E

3775 ,

in which all blocks are spatially-local except for JE,E, which contains the term

−
∂

∂E
[∇ · (D∇E)] .
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Schur-Krylov-MG Linear Solver

Combining variables xM = (xe, xn) we write Jx = b as24 M U

L D

35 0@ xM

xE

1A =

0@ bM

bE

1A .

Since M−1 is simple to compute (block-diagonal), we use a Schur complement

formulation to solve for x,

MxM + UxE = bM ⇒ xM = M−1(bM − UxE),

(D − LM−1U)xE = bE − LM−1bM .

Implementation notes:

• The “heat-like” system (D − LM−1U)xE = bE − LM−1bM is solved with a

Conjugate Gradient iteration.

• The CG solver is preconditioned with geometric multigrid [HYPRE].

• xM is then easily computed from xE.
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Cosmology Results
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Conclusions

• Multi-physics couplings may be achieved in a variety of ways:

– Explicit, Time-subcycled, Mixed IMEX, Fully Implicit.

– Decision depends on stiffness & separability of system.

– Coupling method will dictate stability, accuracy, and scalability

limitations of the overall simulation.

• Implicitly-coupled formulations promise scalability, stability
and accuracy, but at a cost:

– Large-scale nonlinear solvers become a necessity.

– There is a well-documented approach (Newton-Krylov), available

through a number of highly configurable and effective solver libraries.

– True robustness and scalability for real-world problems may require

application-specific knowledge in the preconditioner.
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Newton Robustness Improvements

Newton robustness w.r.t. initial guess is often accomplished with globalization

methods: attempt to generate iterates within Newton convergence radius:

• Line search: adjusts Newton update to increase Newton radius of

convergence.

• Begin with another method: use a slower, more globally-convergent

method (e.g. Picard iteration) at first to obtain initial Newton iterate.

• Improved initial guess: use another method to generate a better initial

Newton iterate (e.g. explicit predictor for time-dependent problems).

• Trust region: combines Newton direction with steepest-descent direction

to ensure initial convergence.

• Continuation: iterative solver using Newton method for problems involving

bifurcations, phase transitions or steady-state calculations.
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