Robust and Flexible Newton-Krylov based Solution Methods for Nonlinear Coupled Multiphysics Systems

U.S. DEPARTMENT O

Outline

- Motivation: Multiple-time-scale Multi-physics Nonlinear Systems
- Outline of Example Systems of Coupled Nonlinear PDEs
- Why Newton-Krylov Methods?
 - Multiple-time-scale Systems
 - Characterization of Complex Solution Spaces
 - Optimization
- Solution Algorithm Performance
 - Parallel and Algorithmic Scaling of DD preconditioners
 - Multi-level Preconditioners
 - N-level Aggressive Coarsening Graph-based Block DD/AMG
- Conclusions

Motivation: Achieving Predictive Simulations of Complex Highly Nonlinear Multiphysics Systems (PDEs)

Specific Driving/Focusing Application Areas: MHD and Transport/Reaction Systems

What are multi-physics systems? (A multiple-time-scale perspective)

These systems are characterized by a myriad of complex, interacting, nonlinear multiple time- and length-scale physical mechanisms.

These mechanisms can balance to produce:

• steady-state behavior,

• nearly balance to evolve a solution on a dynamical time scale that is long relative to the component time scales,

• or can be dominated by one, or a few processes, that drive a short dynamical time scale consistent with these dominating modes.

e.g. Fusion Reactors (Tokamak -ITER; Pulsed - NIF & Z-pinch); Fission Reactors (GNEP); Astrophysics; Combustion; Chemical Processing; Fuel Cells; etc.

Multiple-time-scale systems: Bifurcation Analysis of a Steady Reacting H₂, O₂, Ar, Opposed Flow Jet Reactor

Multiple-time-scale systems: E.g. Methanol Pool Fire LES-ksgs and Flamelet Combustion Model (w/ T. Smith – MPSalsa)

2D axisymmetric Simulation

Full 3D Simulation (note: non-axisymmetric mode)

Approx. Physical Time scales (sec.):

- Chemical kinetics: 10⁻¹⁰ to 10⁻³
- Momentum diffusion: 10⁻⁶

- Heat conduction: 10⁻⁶
- Convection: 10⁻³ to 10⁻¹
- Buoyancy (puffing freq. = 2.8Hz): 10⁻¹ to 10⁰
- Meandering mode: 10^o

Z-pinch Double Hohlraum Schematic

Globalized Inexact Newton Method (incomplete citations)

Globalized Newton Methods

- backtracking (line-search)
- trust region (dogleg)
- Dennis-Schnabel 1983

Inexact Newton Methods

- Iocal theory
 Dembo-Eisenstat-Steihaug 1982
- global theory
 Eisenstat-Walker 1994, Brown-Saad 1994
- Linkage to linear solver criteria
 Dembo-Eisenstat-Steihaug 1982, Eisenstat-Walker 1996

Globalized Newton-Krylov Methods

- Use Krylov solvers to determine inexact Newton steps
- **Backtracking and trust region-like globalizations- Robustness** Brown-Saad 1990, Shadid-Tuminaro-Walker 1997, Pernice-Walker 1998
- Review: Jacobian free Newton methods: Keyes-Knoll, 2003
- Guide: Algorithms and implementation: T. Kelley 2003
- Review: Globalization techniques for Newton-Krylov:

Pawlowski-Shadid-Simonis-Walker, 2007

- General algorithms and software
 - > NKSOL (later KINSOL), Brown-Saad 1990
 - > NITSOL, Pernice-Walker 1998
 - > PETSc, Balay-Gropp-Curfman McInnes-Smith 2001
 - > NOX (Trilinos Solver Framework), Pawlowski-Kolda-Hooper 2002

A very broad range of scientific and engineering applications require the high-resolution computational analysis of strongly coupled nonlinear multiple-time-scale multiphysics systems.

E. g. Transport / Reaction Systems, MHD

Navier Stokes $\frac{\partial(\rho \mathbf{v})}{\partial t} + \nabla \cdot [\rho \mathbf{v} \otimes \mathbf{v} - \mathbf{T}]$ $-\rho \mathbf{g} = 0; \quad \mathbf{T} = -\left(P + \frac{2}{3}\mu(\nabla \cdot \mathbf{u})\right)\mathbf{I} + \mu[\nabla \mathbf{u} + \nabla \mathbf{u}^T]$ $\frac{\partial \rho}{\partial t} + \nabla \cdot [\rho \mathbf{v}] = 0$ $\frac{\partial(\rho e)}{\partial t} + \nabla \cdot [\rho \mathbf{v} + \mathbf{q}] = \mathbf{0}$ Discretization - Extensions of Stabilized FE (Hughes et. al)
Q1/Q1 V-P elements, SUPG like terms and
Discontinuity Capturing type operators

$$\begin{bmatrix} \mathbf{M} & \mathbf{0} \\ \mathbf{N} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \dot{\mathbf{v}} \\ \dot{\mathbf{P}} \end{bmatrix} + \begin{bmatrix} \mathbf{A} & -\mathbf{B}^T \\ \mathbf{B}\mathbf{R} & \mathbf{K} \end{bmatrix} \begin{bmatrix} \mathbf{v} \\ \mathbf{P} \end{bmatrix}$$

General Case a Strongly Coupled, Multiple Time- and Length-Scale, Nonlinear, Nonsymmetric System with Parabolic and Hyperbolic Character

General Case a Strongly Coupled, Multiple Time- and Length-Scale, Nonlinear, Nonsymmetric System with Parabolic and Hyperbolic Character

Navier Stokes + Electro-magnetics

$$\begin{aligned} \frac{\partial(\rho \mathbf{v})}{\partial t} + \nabla \cdot \left[\rho \mathbf{v} \otimes \mathbf{v} - \mathbf{T}\right] - \mathbf{J} \times \mathbf{B} - \rho \mathbf{g} &= 0 \ ; \ \mathbf{T} = -\left(P + \frac{2}{3}\mu(\nabla \cdot \mathbf{u})\right)\mathbf{I} + \mu[\nabla \mathbf{u} + \nabla \mathbf{u}^T] \\ \frac{\partial\rho}{\partial t} + \nabla \cdot \left[\rho \mathbf{v}\right] &= 0 \\ \frac{\partial(\rho e)}{\partial t} + \nabla \cdot \left[\rho \mathbf{v} + \mathbf{q}\right] - \eta \|\mathbf{J}\|^2 = \mathbf{0} \end{aligned}$$

Reduced form of Maxwell's Equations

$$rac{\partial {f B}}{\partial t} -
abla imes [{f v} imes {f B}] +
abla imes (\eta {f J}) = 0 ext{ ; } \quad {f J} = rac{1}{\mu_0}
abla imes {f B}$$

General Case a Strongly Coupled, Multiple Time- and Length-Scale, Nonlinear, Nonsymmetric System with Parabolic and Hyperbolic Character

Why Newton-Krylov Methods?

Why Newton-Krylov Methods?

(Dan Reynolds previous talk)

Multiple-time-scale systems: Numerical Experiments Chemical Dynamics (Brusselator)

$$\frac{\partial T}{\partial t} = D_1 \frac{\partial^2 T}{\partial x^2} + \alpha - (\beta + 1)T + T^2 C$$

$$D_1 = D_2 = 1/40$$

$$\alpha = 0.6$$

$$\beta = 2.0$$

$$\frac{\partial C}{\partial t} = D_2 \frac{\partial^2 C}{\partial x^2} + \beta T - T^2 C$$

$$\Delta x = 1/100$$

$$T_{\min} \approx 10.0$$

Fully-implicit Method: Trapezoidal Rule
2nd order (Fl 2nd):

$$M_{k}(\dot{\chi}^{n+1}) + D_{k}^{n+1}(\chi^{n+1}) + S_{k}^{n+1}(\chi^{n+1}) + F_{k} = 0$$

$$\dot{\chi}^{n+1} = 2(\frac{\chi^{n+1} - \chi^{n}}{\Delta t}) - \dot{\chi}^{n}$$

$$\begin{cases}
\text{Strang Splitting (SS):} \\
\text{to advance solution over } [t^{n}, t^{n} + \Delta t] \\
M_{k}(\dot{\chi}^{*}) + D_{k}^{*}(\chi^{*}) + F_{k} = 0 \text{ on } [0, \Delta t / 2] \\
M_{k}(\dot{\chi}^{**}) + S_{k}^{**}(\chi^{**}) = 0 \text{ on } [0, \Delta t / 2] \\
M_{k}(\dot{\chi}^{***}) + D_{k}^{**}(\chi^{***}) + F_{k} = 0 \text{ on } [0, \Delta t / 2] \\
\chi^{n+1} = \chi^{***}(\Delta t) \longrightarrow \qquad \chi^{n+1} = \tilde{D}_{\Delta t/2}\tilde{S}_{\Delta t}\tilde{D}_{\Delta t/2}\chi^{n}$$

(w/David Ropp, C. Ober)

G. Strang, SIAM J. Numer. Anal. 5,3, 1968

Diffusion/Reaction System

Operator Split Component solvers:

- Diffusion: 2nd order Crank-Nicholson Galerkin FE (A-stable) 2nd order SDIRK Galerkin FE (A & L -stable)
- Reaction: CVODE Variable order High accuracy tolerances

Brusselator: Comparison of Spatial and Temporal Profiles for Strang Split and Fully Implicit Solvers

Brusselator: L-stability of diffusion solve is critical for stability (SDIRK)

• Parameter γ determines limit of amplification factor "R " as $\lambda \Delta t \rightarrow -\infty$

First order splitting with A- and L-stable diffusion solves demonstrate effect of damping of high wavenumber instability

Ropp, S., JCP 2004, 2005 Ober, S., JCP 2004

Convection/Diffusion/Reaction System

Operator Split Component solvers:

- Advection: 2nd order implicit FE-FCT Kuzmin et. al. (2000)
- Diffusion: 2nd order Crank-Nicholson Galerkin FE (A-stable) 2nd order SDIRK Galerkin FE (A & L -stable)
- Reaction: CVODE Variable order High accuracy tolerances

A-stability of Operator Split Integration of Convection/Diffusion/Reaction System: Initial Results

Why Newton-Krylov Methods?

Multiple-time-scale Systems: Newton-Krylov Methods for Hurricane Simulations

(Riesner, Mousseau, Wyszogrodzki, Knoll, MWF 2004)

- 3D compressible N-S & phase change
- Error/CPU time Comparison of
 - Semi-implicit (SI)
 - JFNK with SI as preconditioner
- Study transient hurricane intensification to ramped increase in sea surface temperature

(Courtesy of D. Knoll - LANL)

Hurricane Equation Set

$$\begin{aligned} \frac{\partial u\rho}{\partial t} + \frac{\partial uu\rho}{\partial x} + \frac{\partial vu\rho}{\partial y} + \frac{\partial wu\rho}{\partial z} &= -\frac{\partial p'}{\partial x} \\ + f\rho(v - v_e) - \tilde{f}w + \frac{\partial \kappa\rho\tau^{11}}{\partial x} + \frac{\partial \kappa\rho\tau^{12}}{\partial y} + \frac{\partial \kappa\rho\tau^{13}}{\partial z}, \end{aligned}$$
(1)

$$\frac{\partial v\rho}{\partial t} + \frac{\partial uv\rho}{\partial x} + \frac{\partial vv\rho}{\partial y} + \frac{\partial wv\rho}{\partial z} = -\frac{\partial p'}{\partial y} - f\rho(u - u_e) + \frac{\partial \kappa\rho\tau^{21}}{\partial x} + \frac{\partial \kappa\rho\tau^{22}}{\partial y} + \frac{\partial \kappa\rho\tau^{23}}{\partial z}, \qquad (2)$$

$$\begin{aligned} \frac{\partial w\rho}{\partial t} + \frac{\partial uw\rho}{\partial x} + \frac{\partial vw\rho}{\partial y} + \frac{\partial ww\rho}{\partial z} &= -\frac{\partial p'}{\partial z} \\ + \tilde{f}\rho(u - u_e) - (\rho + q_c)g + \frac{\partial \kappa\rho\tau^{31}}{\partial x} + \frac{\partial \kappa\rho\tau^{32}}{\partial y} + \frac{\partial \kappa\rho\tau^{33}}{\partial z}, \end{aligned}$$
(3)

$$\frac{\partial \theta \rho}{\partial t} + \nabla \cdot (\mathbf{V} \theta \rho) = \frac{\theta \rho L}{T C_p} f_{cloud} + f_{surface-energy} + \nabla \cdot (\mathbf{F}_{\theta})$$
(4)

$$\frac{\partial q_{\upsilon}\rho}{\partial t} + \nabla \cdot (\mathbf{V}q_{\upsilon}\rho) = -f_{cloud} + f_{surface-gas} + \nabla \cdot (\mathbf{F}_{\mathbf{q}_{\mathbf{v}}})$$
(5)

$$\frac{\partial q_c \rho}{\partial t} + \nabla \cdot (\mathbf{V} q_c \rho) = f_{cloud} - f_{fall} + \nabla \cdot (\mathbf{F}_{\mathbf{q}_e}) \tag{6}$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\mathbf{V}\rho) = -f_{cloud} + f_{surface-gas} \tag{7}$$

Multiple-time-scale Systems: Newton-Krylov Methods for Hurricane Simulations (Riesner, Mousseau, Wyszogrodzki, Knoll, MWR 2004)

Why Newton-Krylov Methods?

Convergence properties

- Strongly coupled multi-physics often requires a strongly coupled nonlinear solver
- Quadratic convergence near solutions (backtracking, adaptive convergence criteria)
- Often only require a few iterations to converge, if close to solution, independent of problem size

$$\mathbf{F}(\mathbf{x},\boldsymbol{\lambda}_1,\boldsymbol{\lambda}_2,\boldsymbol{\lambda}_3,..)=\mathbf{0}$$

Inexact Newton-Krylov
Solve
$$\mathbf{J}\mathbf{p}_k = -\mathbf{F}(\mathbf{x}_k)$$
; until $\frac{\|\mathbf{J}\mathbf{p}_k + \mathbf{F}(\mathbf{x}_k)\|}{\|\mathbf{F}(\mathbf{x}_k)\|} \le \eta_k$

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \Theta \mathbf{p}_k$$

Jacobian Free N-K Variant

$$\mathbf{M}\mathbf{p}_{k} = \mathbf{v}$$

 $\mathbf{J}\mathbf{p}_{k} = \frac{\mathbf{F}(\mathbf{x} + \delta \mathbf{p}_{k}) - \mathbf{F}(\mathbf{x})}{\delta}$; or by AD

See e.g. Knoll & Keyes, JCP 2004

National Laboratories

Why Newton-Krylov Methods?

Characterizing Complex Nonlinear Solution Spaces with a Transient Code is Difficult

Various discrete time integration methods:

- can produce "spurious" stable and unstable steady solutions and limit cycles
- can stabilize unstable solutions of the ODE/PDE
- can produce very different dynamics and bifurcation behavior than ODE/PDE

Characterizing Complex Nonlinear Solution Spaces with a Transient Code is Difficult

Various discrete time integration methods: (can also be said of discrete spatial approx)

- can produce "spurious" stable and unstable steady solutions and limit cycles
- can stabilize unstable solutions of the ODE/PDE
- can produce very different dynamics and bifurcation behavior than ODE/PDE

In addition:

- turn a BVP -> IBVP with unknown initial data (basin of attraction of solutions)
- require very long time integration near critical points
- require a detailed sampling of parameter space to characterize a solution space
- produce complex interactions between temporal and spatial discretizations
- cannot be used to efficiently "track" location of critical points with multiple parameters

Hydro-Magnetic Rayleigh-Bernard: Determining Critical Stability and Critical Points

Linear Stability of Computational Solution by Normal Mode Analysis

$$egin{aligned} &\sigma_i \mathbf{B} \mathbf{q}_i = \mathbf{F}^{'} \mathbf{q}_i \ &(\mathbf{F}^{'} - \eta_c \mathbf{B})^{-1} (\mathbf{F}^{'} - \mu_c \mathbf{B}) \mathbf{w} =
u \mathbf{w} \end{aligned}$$

Approximately invert by ML preconditioned Krylov solve

Turning Point Tracking:

$$F(\mathbf{x}, Ra^*, Q^*) = \mathbf{0}$$

$$F'\mathbf{v} = \mathbf{0}$$

$$\Gamma^{\mathbf{T}}\mathbf{v} - 1 = 0$$
Solve extended system
with Newton's method

Why Newton-Krylov Methods?

PDE Constrained Optimization of Poly-Silicon CVD Reactor Unstructured FE Reacting Flow MPSalsa code

Poly-Silicon Epitaxy from Trichlorosilane in Hydrogen Carrier;

3D (u,v,w,P,T) 3 chemical species 1.2M unknowns

PDE Constrained Optimization of Poly-Silicon CVD Reactor

Why Newton-Krylov Methods?

Very Large Problems -> Parallel Iterative Solution of Sub-problems

Krylov Methods - Robust, Scalable and Efficient Parallel Preconditioners

- Approximate Block Factorizations
- Physics-based Preconditioners
- Multi-level solvers for systems and scalar equations

ML library: Multilevel Preconditioners

(R. Tuminaro, M. Sala, J. Hu, M. Gee (UT Munich)]

2-level and N-level Aggressive Coarsening Graph-based Block AMG

Level 0 (3) nodes

- Aggregation is used to produce a coarse operator
 - Create graph where vertices are block nonzeros in matrix A_k
 - Edge between vertices i and j included if block B_k(i,j) contains nonzeros

Level 1 (9 nodes)

- Decompose graph into aggregates (subgraphs) [Metis/ParMetis]
- Construction of simple restriction/interpolation operators (e.g. piecewise constants on agg.)

Visualization of effect of partition of matrix graph on mesh

• Construction of
$$A_{k-1}$$
 as $A_{k-1} = R_{k-1} A_k I_{k-1}$

Level 2 (36 nodes)

- Nonsmoothed aggregation
- Domain decomposition smoothers (sub-domain GS and ILU)
- Coarse grid solver can use fewer processors than for fine mesh solve (direct/approximate/iterative)

Aggregation based Multigrid:

- Vanek, Mandel, Brezina, 1996
- Vanek, Brezina, Mandel, 2001

Aggregation used in DD:

- Paglieri, Scheinine, Formaggia, Quateroni, 1997
- Jenkins, Kelley, Miller, Kees, 2000
- Toselli, Lasser, 2000
- Sala, Formaggia, 2001

Multilevel Preconditioner Scaling Study: 3D Thermal Buoyancy Driven Convection

Comparison of 1-level with 2-level geometric & algebraic 2D & 3D Thermal Convection Problem

proc	fine grid	1 - level Metho	d llu DD	coarse II	nknowne	2-level: ilu-superlu			
	unknowns			coarse u		geometric		algebraic	
		avg its per	time	geometric	algebraic	avg its per	time	avg its per	time
		Newt step	(sec)			Newt step	(sec)	Newt step	(sec)
1	4356	41	23	100	96	29	18	28	20
4	16,900	98	62	324	320	37	25	40	27
16	66,564	251	275	1156	1088	40	34	50	39
64	264,196	603	1,399	4356	4096	38	57	57	69
256	1,052,676	1,478	8,085	16900	16384	37	151	63	191

proc	fine grid	ne grid 1 - level Method Ilu DD nknowns		coarse unknowns		2-level: gs2-superlu			
	unknowns					geometric		algebraic	
		avg its per	time	geometric	algebraic	avg its per	time	avg its per	time
		Newt step	(sec)			Newt step	(sec)	Newt step	(sec)
4	24.565	40[5]	123	135	120	36[5]	101	30[4]	71
32	179,685	112[5]	282	625	480	44[4]	107	50[4]	109
256	1.373.125	296[5]	863	3,645	2560	47[5]	179	58[4]	152
2048	10,733,445	650[5]	2,915	24,565		47[4]	546	59[4]	681

Analysis: Sala; Math. Modeling and Numer. Anal., 2004 Sala, Shadid, Tuminaro; accepted in SIMAX Numerical Exp: • Coarse mesh: SuperLU direct solver

• Run on Sandia ASCI Red machine

Lin, Sala, Shadid, Tuminaro; accepted in IJNME

Scaling Study: Steady-State NPN BJT 1- and 3-level Preconditioners

- Steady-state 2D drift diffusion bias 0.3V; initial guess NLP solution ٠
- Smoothers/solvers: ILU, ILU, KLU
- 85 nodes per aggregate; nonsmoothed aggregation
- Run on Sandia Red Storm machine (Cray XT3)

Stabilized FE method (Charon - Hennigan, Hoekstra, Lin, S)

Weak Scaling Study: 2x1.5um NPN BJT Bias 0.3V Steady Drift-Diffusion

Effect of subcommunicator for Amesos for ML NSA

Trilinos: Full Vertical Solver Coverage (Part of DOE: TOPS SciDAC Effort)

Optimization Unconstrained: Constrained:	Find $u \in \Re^n$ that minimizes $g(u)$ Find $x \in \Re^m$ and $u \in \Re^n$ that minimizes $g(x, u)$ s.t. $f(x, u) = 0$	моосно
Bifurcation Analysis	Given nonlinear operator $F(x, u) \in \Re^{n+m} \to \Re^n$ For $F(x, u) = 0$ find space $u \in U \ni \frac{\partial F}{\partial x}$ singular	LOCA
Transient Problems DAEs/ODEs:	Solve $f(\dot{x}(t), x(t), t) = 0$ $t \in [0, T], x(0) = x_0, \dot{x}(0) = x'_0$ for $x(t) \in \Re^n, t \in [0, T]$	Rhythmos
Nonlinear Problems	Given nonlinear operator $F(x,u) \in \Re^{n+m} \to \Re^n$ Solve $F(x) = 0$ $x \in \Re^n$	NOX
Linear Problems Linear Equations: Eigen Problems:	Given Linear Ops (Matrices) $A, B \in \Re^{m \times n}$ Solve $Ax = b$ for $x \in \Re^n$ Solve $A\nu = \lambda B\nu$ for (all) $\nu \in \Re^n$, $\lambda \in \Re$	AztecOO Belos Ifpack, ML, etc Anasazi

Conclusions

• Newton-Krylov methods can provide a very effective, robust and flexible solution technology for analysis and characterization of complex nonlinear solution spaces. For steady state, time dependent and optimization type solutions. (e.g. Transport/reaction, resistive MHD)

• High parallel efficiencies for fully-implicit fully coupled Newton-Krylov iterative solvers for a wide range of problems are possible.

• Parallel multilevel aggressive coarsening block AMG preconditioners for systems have shown promising results for algorithmic scalability and CPU time performance of transport solutions.

(Issues: Strong convection, reaction and FE aspect ratios for multilevel methods. -> Physics-based for efficient transient solution)

• Cray XT3 very capable parallel computing platform. Very good scaling results.

