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Motivation: Achieving Predictive Simulations of Complex Highly Nonlinear Multi-
physics Systems (PDEs)

Specific Driving/Focusing Application Areas: MHD and Transport/Reaction Systems

 What are multi-physics systems? (A multiple-time-scale perspective)
These systems are characterized by a myriad of complex, interacting, nonlinear
multiple time- and length-scale physical mechanisms.

These mechanisms can balance to produce:

• steady-state behavior,

• nearly balance to evolve a solution on a dynamical time scale that is long
relative to the component time scales,

• or can be dominated by one, or a few processes, that drive a short
dynamical time scale consistent with these dominating modes.

e.g. Fusion Reactors (Tokamak -ITER; Pulsed - NIF & Z-pinch); Fission
Reactors (GNEP);  Astrophysics; Combustion; Chemical Processing; Fuel
Cells; etc.

 



Multiple-time-scale systems: Bifurcation Analysis of a Steady Reacting
H2, O2,, Ar, Opposed Flow Jet Reactor

O2, Ar

H2, Ar

70 steady state reacting flow solves
(10 species, 19 reactions)

Approx. Physical Time scales (sec.):
• Chemical kinetics: 10-12 to 10-4

• Momentum diffusion: 10-6

• Heat conduction: 10-6

• Mass diffusion: 10-5 to 10-4

• Convection: 10-5 to 10-4

• Diffusion flame dynamics:       (steady)!

Streamlines

Temperature (Min. 300oK, Max 2727oK)

OH (Min. 0.0, Max 0.177)



• Heat conduction: 10-6

• Convection: 10-3 to 10-1

• Buoyancy (puffing freq. = 2.8Hz): 10-1 to 100

• Meandering mode: 100

Multiple-time-scale systems: E.g. Methanol Pool Fire 
LES-ksgs and Flamelet Combustion Model (w/ T. Smith – MPSalsa)

Full 3D Simulation  (note:  non-axisymmetric mode)2D axisymmetric Simulation

Approx. Physical Time scales (sec.):
• Chemical kinetics: 10-10 to 10-3

• Momentum diffusion: 10-6



Z-pinch Double Hohlraum Schematic

Z Machine (Approximate Ranges)

100ns current rise time  for
      20 MA Electrical Current

250 ns plasma shell collapse
       and stagnation

10-30 ns X-ray power pulse
   ~280 TW power

A Recent Review: K. Matzen, et. al.,  POP 12, 055503 (2005)

Computational Stability Constraints:

Hyperbolic Operators: Δt < Δx/2c
• Alfven waves
• Magneto-sonic waves
• Material transport
• Radiation transport

Parabolic Operators: Δt < Δx2/D
• Magnetic Diffusion
• Heat Conduction

Hall Physics: Whistler waves
        ->  Δt < Δx2/(VA di)



Globalized Newton Methods
•  backtracking (line-search)
•  trust region (dogleg)
•  Dennis-Schnabel 1983

Inexact Newton Methods
•  local theory
    Dembo-Eisenstat-Steihaug 1982

•  global theory
     Eisenstat-Walker 1994, Brown-Saad 1994

•  Linkage to linear solver criteria
   Dembo-Eisenstat-Steihaug 1982,  Eisenstat-Walker 1996

Globalized Newton-Krylov Methods
•  Use Krylov solvers to determine inexact Newton steps
•  Backtracking and  trust region-like globalizations- Robustness
   Brown-Saad 1990, Shadid-Tuminaro-Walker 1997, Pernice-Walker 1998
• Review: Jacobian free Newton methods: Keyes-Knoll, 2003
• Guide: Algorithms and implementation:   T. Kelley 2003
• Review: Globalization techniques for Newton-Krylov:
                             Pawlowski-Shadid-Simonis-Walker, 2007
• General algorithms and software

 NKSOL (later KINSOL), Brown-Saad 1990
 NITSOL, Pernice-Walker 1998
 PETSc, Balay-Gropp-Curfman McInnes-Smith 2001
 NOX  (Trilinos Solver Framework), Pawlowski-Kolda-Hooper  2002

Globalized Inexact Newton Method (incomplete citations)



A very broad range of scientific and engineering applications require
the high-resolution computational analysis of strongly coupled
nonlinear multiple-time-scale multiphysics systems.

 E. g. Transport / Reaction Systems, MHD
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Thin Fuel Cell Structure:
Anode = 40µM
Electrolyte = 100µM
Cathode = 40µM

Gold current collector
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Simulation of Experimental Solid Oxide H2 Fuel Cell
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22        gas-phase species, 77 reactions
17  surface-phase species, 35 reactions
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Transport / Reaction and Resistive MHD Models

 

Navier Stokes

General Case a Strongly Coupled, Multiple Time- and Length-Scale,
Nonlinear, Nonsymmetric System with Parabolic and Hyperbolic Character

= 0

= 0

Discretization - Extensions of Stabilized FE (Hughes et. al)
            Q1/Q1 V-P elements, SUPG like terms and 
            Discontinuity Capturing type operators
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Transport / Reaction and Resistive MHD Models

 

Navier Stokes + Transport / Reaction Physics

General Case a Strongly Coupled, Multiple Time- and Length-Scale,
Nonlinear, Nonsymmetric System with Parabolic and Hyperbolic Character
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Transport / Reaction and Resistive MHD Models

 

Navier Stokes + Electro-magnetics

General Case a Strongly Coupled, Multiple Time- and Length-Scale,
Nonlinear, Nonsymmetric System with Parabolic and Hyperbolic Character
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Reduced form of Maxwell’s Equations



Why Newton-Krylov Methods?

Newton-Krylov

Direct-to-steady-state Fully-implicit transient

Stability and Accuracy Properties

• Stable (stiff systems)

• High order methods

• Variable order techniques

• Local and global error control possible

• Can be stable and accurate run at the
dynamical time-scale of interest in
multiple-time-scale systems
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Why Newton-Krylov Methods?

Newton-Krylov

Direct-to-steady-state Fully-implicit transient

Stability Accuracy

(Dan Reynolds previous talk)



Multiple-time-scale systems: Numerical Experiments
Chemical Dynamics ( Brusselator )
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Diffusion/Reaction System

Operator Split Component solvers:

• Diffusion:   2nd  order Crank-Nicholson Galerkin FE (A-stable)
 2nd order SDIRK Galerkin FE (A & L -stable)

• Reaction:   CVODE Variable order - High accuracy tolerances



!t / T ~ 1 / 3

Brusselator: Comparison of Spatial and Temporal
Profiles for Strang Split and Fully Implicit Solvers

~1/100

~1/10

~1/500

!t / T ~ 1 / 3 10-110-210-3

Δt/Tmin

t = 80.0

FI

Multiple time scales:
Knoll, Chacon, Margolin, Mousseau, JCP 2003
Ropp, S., JCP  2004, 2005
Ober, S. JCP 2004



Brusselator: L-stability of diffusion solve
is critical for stability (SDIRK)

♦ Parameter      determines limit of amplification factor “R “ as! t!" # $%
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Case 1:  A-stable, 2nd order

Case 2:  A-stable, 3rd order

Case 3:  A- and L-stable, 2nd order

Ropp, S., JCP 2004, 2005
Ober, S.,  JCP 2004

First order splitting with A- and L-stable diffusion
solves demonstrate effect of damping of high
wavenumber instability



Convection/Diffusion/Reaction System

Operator Split Component solvers:

• Advection: 2nd order implicit FE-FCT Kuzmin et. al. (2000) 

• Diffusion:   2nd  order Crank-Nicholson Galerkin FE (A-stable)
 2nd order SDIRK Galerkin FE (A & L -stable)

• Reaction:   CVODE Variable order - High accuracy tolerances



A-stability of Operator Split Integration of Convection/Diffusion/Reaction
System: Initial Results

TR: A-stable
Diffusion
Integrator  
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SDIRK: L-stable
Diffusion Integrator
  

100

n - cell density;
C - chemo-attractant 
      concentration;

Ropp, S., Submitted to JCP



Why Newton-Krylov Methods?

Newton-Krylov

Direct-to-steady-state Fully-implicit transient

Stability Accuracy Efficiency



Multiple-time-scale Systems:
Newton-Krylov Methods for
Hurricane Simulations
(Riesner, Mousseau, Wyszogrodzki, Knoll, MWR
2004)

• 3D compressible N-S & phase change
• Error/CPU time Comparison of

• Semi-implicit (SI)
• JFNK with SI as preconditioner

• Study transient hurricane intensification to
ramped increase in sea surface temperature

(Courtesy of D. Knoll - LANL)



Knoll -  Slide 2

SI - needs to run at stiff wave CFL; JFNK - dynamical time scale

Multiple-time-scale Systems: Newton-Krylov Methods for Hurricane
Simulations (Riesner, Mousseau, Wyszogrodzki, Knoll, MWR 2004)



Why Newton-Krylov Methods?

Newton-Krylov

Direct-to-steady-state Fully-implicit transient

Convergence properties

• Strongly coupled multi-physics often
requires a strongly coupled nonlinear
solver

• Quadratic convergence near
solutions (backtracking, adaptive
convergence criteria)

• Often only require a few iterations to
converge, if close to solution,
independent of problem size
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Why Newton-Krylov Methods?

Newton-Krylov

Direct-to-steady-state Fully-implicit transient

Convergence
Properties

Characterization 
Complex Soln. Spaces

Parameter
Continuation

Bifurcation
Analysis

Stability
Analysis

Stability Accuracy Efficiency



Hydro-Magnetic Rayleigh-
Bernard Stability

Stable Fields/Flow  at 
Ra = 4000, Q = 81

Unstable Flow  at 
Ra = 4000, Q = 144

Vx

Jz



Characterizing Complex Nonlinear Solution Spaces with a
Transient Code is Difficult

p=5 p=15p=10   Hopf Bifurcation?

Various discrete time integration methods:
• can produce “spurious” stable and unstable steady solutions and limit cycles
• can stabilize unstable solutions of the ODE/PDE
• can produce very different dynamics and bifurcation behavior than ODE/PDE



Characterizing Complex Nonlinear Solution Spaces with a
Transient Code is Difficult

p=5 p=15p=10   Hopf!

Various discrete time integration methods:
• can produce “spurious” stable and unstable steady solutions and limit cycles
• can stabilize unstable solutions of the ODE/PDE
• can produce very different dynamics and bifurcation behavior than ODE/PDE

In addition:

• turn a BVP -> IBVP with unknown initial data (basin of attraction of solutions)
• require very long time integration near critical points
• require a detailed sampling of parameter space to characterize a solution space
• produce complex interactions between temporal and spatial discretizations
• cannot be used to efficiently “track” location of critical points with multiple parameters

(can also be said of discrete spatial approx)



Evectors for unstable
e-value at Bifurcation

Nonlinear Stable
Solution

Temp.

Vx

Vy

By

Bx

Vx

Bx

Temp.

Hydro-Magnetic Rayleigh-Bernard Stability: Direct Determination of Linear
Stability and Nonlinear Equilibrium Solutions (Steady State Solves)

Chandrasekhar Number Q = 10
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Magnetic Fields 

w/ No Flow

Stable Non-zero
Magnetic Fields

 w / Thermal
Convective Flow

Hydro-Magnetic Rayleigh-Bernard:
Determining Critical Stability and Critical Points

Solve extended system
with Newton’s method

Turning Point Tracking:

Linear Stability of Computational
Solution by Normal Mode Analysis

Approximately invert by ML
preconditioned Krylov solve



Why Newton-Krylov Methods?

Newton-Krylov

Direct-to-steady-state Fully-implicit transient

Convergence
Properties

Characterization 
Complex Soln. Spaces

Parameter
Continuation

Bifurcation
Analysis

Stability
Analysis

Design
Optimization;

Inverse 
Problems;

Adjoint Sensitivities 
& Error Est. for

Deterministic (UQ);

Optimization:
George Biros talk

Error Estimation:
Don Estep Talk



PDE Constrained Optimization of Poly-Silicon CVD Reactor
Unstructured FE Reacting Flow MPSalsa code

3D 2D 1D

di

f
1

2
--- di dave⁄ 1–( )

2

radii

!=

Objective Function:0D

Poly-Silicon Epitaxy
from Trichlorosilane
in Hydrogen Carrier;

3D (u,v,w,P,T)
3 chemical species
1.2M unknowns



PDE Constrained Optimization of Poly-Silicon CVD Reactor

Ω= P3

~Time

Black box

PDE Cons.

Vi=30cms
XTCS=2.4%

Vi= P1; XTCS=P4

Vi= P1; XTCS=P4
Vp= P3, XTCS=0%

Ti=300K Tw=1398K

Ω= P2

PDE Constrained 
Optimization:

Minimize:  f(x,p)
such that:   F(x,p)=0

Use Newton’s Method 
solve KKT system

W/Pawlowski, Salinger, van Bloemen Waanders, Bartlett, Lin - SNL

Initial
4-Param Bound
4-Param Free

5%

35%

0.5% ~ 7
(Red Storm: XT3)

102438M

6.2
(3GHz Cluster)

481.2

~ 6
(Red Storm: XT3)

1284.8M

Time (hrs.)ProcsUnks



Why Newton-Krylov Methods?

Newton-Krylov

Direct-to-steady-state Fully-implicit transient

Convergence
Properties

Characterization 
Complex Soln. Spaces

Design 
Optimization Stability Accuracy Efficiency

Very Large Problems -> Parallel Iterative Solution of Sub-problems

Krylov Methods - Robust, Scalable and Efficient Parallel Preconditioners
• Approximate Block Factorizations
• Physics-based Preconditioners
• Multi-level solvers for systems and scalar equations 

Ray Tuminaro, Dan Reynolds: earlier talks 



ML library: Multilevel Preconditioners

• Aggregation is used to produce a coarse operator
• Create graph where vertices are block

nonzeros in matrix Ak
• Edge between vertices i and j included if

block Bk(i,j) contains nonzeros
• Decompose graph into aggregates

(subgraphs) [Metis/ParMetis]
• Construction of simple restriction/interpolation

operators (e.g. piecewise constants on agg.)
• Construction of Ak-1 as Ak-1 = Rk-1 Ak Ik-1

Level 2 (36 nodes) Level 1 (9 nodes) Level 0 (3) nodes

2-level and N-level Aggressive Coarsening Graph-based Block AMG
(R. Tuminaro, M. Sala, J. Hu, M. Gee (UT Munich)]

• Nonsmoothed aggregation
• Domain decomposition smoothers

(sub-domain GS and ILU)
• Coarse grid solver can use fewer

processors than for fine mesh
solve (direct/approximate/iterative)

Visualization of effect of partition of matrix graph on mesh

Aggregation based Multigrid:
• Vanek, Mandel, Brezina, 1996
• Vanek, Brezina, Mandel, 2001

Aggregation used in DD:
• Paglieri, Scheinine, Formaggia, Quateroni, 1997
• Jenkins, Kelley, Miller, Kees, 2000
• Toselli, Lasser, 2000
• Sala, Formaggia, 2001



Multilevel Preconditioner Scaling Study:
3D Thermal Buoyancy Driven Convection



• Coarse mesh: SuperLU direct solver
• Run on Sandia ASCI Red machine

Comparison of 1-level with 2-level geometric & algebraic
2D & 3D Thermal Convection Problem

proc fine grid 1 - level Method Ilu DD

unknowns

avg its per time geometric algebraic avg its per time avg its per time

Newt step (sec) Newt step (sec) Newt step (sec)

1 4356 41 23 100 96 29 18 28 20

4 16,900 98 62 324 320 37 25 40 27

16 66,564 251 275 1156 1088 40 34 50 39

64 264,196 603 1,399 4356 4096 38 57 57 69

256 1,052,676 1,478 8,085 16900 16384 37 151 63 191

algebraic
coarse unknowns

2-level: ilu-superlu

geometric

proc fine grid 1 - level Method Ilu DD

unknowns

avg its per time geometric algebraic avg its per time avg its per time

Newt step (sec) Newt step (sec) Newt step (sec)

4 24.565 40[5] 123 135 120 36[5] 101 30[4] 71

32 179,685 112[5] 282 625 480 44[4] 107 50[4] 109

256 1.373.125 296[5] 863 3,645 2560 47[5] 179 58[4] 152

2048 10,733,445 650[5] 2,915 24,565  47[4] 546   

algebraic
coarse unknowns

2-level: gs2-superlu

geometric

59[4] 681

Analysis: Sala; Math. Modeling and Numer. Anal., 2004
               Sala, Shadid, Tuminaro; accepted in SIMAX 
Numerical Exp: 

Lin, Sala, Shadid, Tuminaro; accepted in IJNME



MHD Pump Prototype

Vx - color
 V-Vector

Red Storm Block AMG Scaling Results - Cray XT3: (2D MHD Pump) 

~20x



~20x

Scaling Study: Steady-State NPN BJT
1- and 3-level Preconditioners

♦ Steady-state 2D drift diffusion bias 0.3V; initial guess NLP solution
♦ Smoothers/solvers: ILU, ILU, KLU
♦ 85 nodes per aggregate; nonsmoothed aggregation
♦ Run on Sandia Red Storm machine (Cray XT3)

“constitutive” relation
Current

conservation

Electric 
potential

Stabilized FE method (Charon - Hennigan, Hoekstra, Lin, S) 

• 8192 processing nodes (single core per node)
• ~333M FE nodes
• 1.01B unknowns
• Solve time per Newton ~570 seconds (ML 4 lPG evel)

Largest Calculation
||ΔC|| = 1019



Trilinos: Full Vertical Solver Coverage
(Part of DOE: TOPS SciDAC Effort)

Bifurcation Analysis LOCA

DAEs/ODEs:
Transient Problems 

Rhythmos

Nonlinear Problems NOX

Eigen Problems:
Linear Equations:

 Linear Problems                     
AztecOO

Belos
Ifpack, ML, etc...

Anasazi

Vector Problems:
Matrix/Graph Equations:

Distributed Linear Algebra Epetra

Tpetra

Optimization

MOOCHO
Unconstrained:
Constrained:



Conclusions

• Newton-Krylov methods can provide a very effective, robust and
flexible solution technology for analysis and characterization of complex
nonlinear solution spaces. For steady state, time dependent and
optimization type solutions. (e.g. Transport/reaction, resistive MHD)
• High parallel efficiencies for fully-implicit fully coupled Newton-Krylov
iterative solvers for a wide range of problems are possible.
• Parallel multilevel aggressive coarsening block AMG preconditioners
for systems have shown promising results for algorithmic scalability and
CPU time performance of transport solutions.
(Issues: Strong convection, reaction and FE aspect ratios for multilevel
methods. -> Physics-based for efficient transient solution)
• Cray XT3 very capable parallel computing platform. Very good scaling
results.


