NSF Site Visit to the Computational Infrastructure for Geodynamics

Geodynamo and Magma Migration

Marc Parmentier Brown University

Outline

- Both Geodynamo and Magma Migration are emerging areas within CIG
- Current Status
- Near-term Plans and Challenges

- Existing codes expected to be available to CIG
 - MAG evolution of original Glatzmaier code
 - single processor
 - well benchmarked
 - MAGIC Christensen, Wicht, Glatzmaier
 - parallized
 - also benchmarked
 - Kuang and Bloxham

• Near-term directions for CIG

Community workshop: from latest CIG News:

"July 9-14. Studies of Earth's Deep Interior (SEDI). An informal discussion of community geodynamo codes under the CIG umbrella is planned. Prague, Czech Republic. Please contact: Peter Olson".

 CIG actively seeking high quality software engineer who would devote significant fraction of effort working with geodynamo codes.

Current Dynamo Code Attributes

- Pseudo-spectral (regular 3D grid + spectral representation)
 - Spherical harmonics in (θ, ϕ) , Chebychef polynomials in r
 - Magnetic field boundary condition is local in harmonic space
 - Time stepping 3 equations (Alfven & inertia wave-limited)
- Slow harmonic transforms with dense polar grid
- Resolution determined by spherical harmonic degree truncations:

n < 48 -	workstation	
48 < n < 256 -	cluster	
n > 256 -	Simulator, Terra Grid.	

 Several partially-to-well-documented Fortran & C-codes are available now (e.g. MAGIC) with good, existing benchmarks.

Model Parameters

Parameter	Turbulent Core	Dynamo Models
$Pr = \frac{v}{\kappa}$	≈ 1	≈ 1
$Pm = \frac{v}{\lambda}$	≈ 1	≈ 1
$E = \frac{v}{OD^2}$	$pprox 10^{-9}$	$10^{-4} - 10^{-5}$
$Ra = \frac{\alpha g \Delta T D^{3}}{\kappa v}$	≈ 10 ¹⁵	$10^{6} - 10^{9}$
K V		

$$Rm = \frac{UD}{\lambda} \approx 10^3 \qquad 10^2 - 10^3$$

Increased "resolution" by

- Finer spatial descretization in full numerical simulation
- Large eddy simulation (LES) introduce subgrid model

• Existing codes expected to be available to CIG

- MAG evolution of original Glatzmaier code
 - single processor
 - well benchmarked
- MAGIC Christensen, Wicht, Glatzmaier
 - parallized
 - also benchmarked
- Kuang and Bloxham
- Near-term directions for CIG
 - Community workshop: from latest CIG News:
 - "July 9-14. Studies of Earth's Deep Interior (SEDI). An informal discussion of community geodynamo codes under the CIG umbrella is planned. Prague, Czech Republic. Please contact: Peter Olson".
 - CIG actively seeking high quality software engineer who would devote significant fraction of effort working with geodynamo codes.

Magma Migration

- Numerical challenges
 - treatment of multiscale processes
 - strongly and locally varying physical properties
- Code "development"
 - Modular existing codes (e.g. PETSc solvers) within a framework
 - Synergies with other CIG areas for example
 - Compressible mantle convection
 - Crustal/lithospheric scale fluid transport
- Near-term directions:

Community workshop Summer 2006 – being organized by Laurent Montesi and Marc Speigelman

convergence rate = 60 km/Myr

Cagnioncle, et al, submitted to JGR

Magma Migration

- Numerical challenges
 - treatment of multiscale processes
 - strongly and locally varying physical properties
- Code "development"
 - Modular existing codes (e.g. PETSc solvers) within a framework
 - Synergies with other CIG areas for example
 - Compressible mantle convection
 - Crustal/lithospheric scale fluid transport
- Near-term directions:

Community workshop Summer 2006 – being organized by Laurent Montesi and Marc Speigelman

Magma Migration

- Numerical challenges
 - treatment of multiscale processes
 - strongly and locally varying physical properties
- Code "development"
 - Modular existing codes (e.g. PETSc solvers) within a framework
 - Synergies with other CIG areas for example
 - Compressible mantle convection
 - Crustal/lithospheric scale fluid transport
- Near-term directions:

Community workshop Summer 2006 – being organized by Laurent Montesi and Marc Speigelman

