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Overview: 

•  Data-driven models 
•  Quest for “realistic” constitutive relationships 

for lithosphere, including upper (brittle) crust, 
lower crust, and upper mantle 

•  Data require material heterogeneity, non-linear 
rheologies, localization  
– models need to be sufficiently flexible to resolve 

multiple spatial and temporal scales 
–  sufficient flexibility/efficiency in generating many 

realizations for inverse modeling 
•  Are FEM an ultimate answer?  
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Time-dependent deformation 
following earthquakes: Common 
suspects 

•  Localized slip on or below the seismic rupture 
(“afterslip”) 

•  Visco-elastic relaxation (lower crust/upper 
mantle; various stress-strain relationships)  

•  Poro-elastic rebound (incapable of large 
horizontal displacements; mostly vertical 
deformation) 

•  …or a combination of the above 



   2000 M6 Iceland earthquakes                Jonsson et al., Nature 2003 
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Landers rupture 

Stack of ERS-1/2 data 
1992-1999 

39 interferograms 



    Post-seismic deformation due to the M7.3 Landers earthquake 

Fialko, JGR 2004 
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“Thin viscous sheet vs Fault-block” 

“Jelly Sandwich vs Crème Brule” 

? 

vs 



V=4 cm/yr 

tr=200 yrs 
D=8 m 



ε=Ασ3.5 
. 



Yuen et al., 1978; Fleitout and Frodivaux, 1980; 
Turcotte and Schubert, 2002 
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Post-Landers CGPS data 

- Rapid initial transient followed by a  
   more gradual decay 

-Difficult to fit assuming exponential  
   dependence (not consistent with linear  
   Maxwell viscoelastic behavior) 

- Possible explanations: 

     Bi- (or multi-) viscous rheology 

     Power-law rheology 

     Rate-and-state friction (or some 
     other form of non-linear localized      
     creep) 

Evidence for and implications from non-linear         
                                             rheologies 



Equivalence between dislocations and body 
force couples (point-source solution) 
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Potency Tensor (Eigenstrain) 
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ε i(x,y) =
1
2

(ˆ n ⊗ s + s⊗ ˆ n ) δ(x − y)

Moment Density Tensor 

€ 

m(x,y) = C : ε i = C : s⊗ ˆ n δ(x − y)

Equivalent Body Forces 

€ 

f(x,y) = −∇ ⋅m = −∇ ⋅ (C : ε i)
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Equivalent Body Forces Are Linear Combination of 6 Double Couples 



Finite Fault Source 
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Potency Tensor (Eigenstrain) 
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ε i(x) = ε i(x,y) dy
Σ
∫

Moment Density Tensor 

€ 

m(x) = C : ε i(x,y)
Σ
∫ dy

Example for Uniform Rectangular Fault 
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Eigenstrain characterizes: 
•  slip system (tensor part) 
•  location 
•  dimension 
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f(x) = −2µ ∇ ⋅ ε i = −µ
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analytic expression for 
equivalent body forces allows: 
•  numerical sampling & processing 
•  analytic Fourier transform 
•  continuum representation of  
  a discontinuous field 



Greens’ Function in Fourier Domain 

Navier’s Equation in Space Domain 

€ 

∇ ⋅ C :∇ ⊗ u( ) + f = 0

€ 

(λ + µ)∇∇ ⋅ u+ µ∇ 2u+ f = 0

or, for isotropic elasticity 

Navier’s Equation in Fourier Domain 
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k ⋅ C :k ⊗ u( ) = f 4π

€ 

(λ + µ)k ⊗ k ⋅ u+ µ k ⋅ k ⊗ u = f 4π
or 

€ 

G−1(k;λ,µ) ⋅ u(k) = f(k)

or simply, with full space elastic Greens’ function  
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Boussinesq’s & Cerruti’s Problems: Elastic Deformation for Surface Traction 
€ 

u = G(x,x0) ⋅ f(x0) dVΩ
∫

solution is 

t1 (k,x3 =0) 

t2 (k,x3 =0) 

t3 (k,x3 =0) 

arbitrary distribution of 
surface traction. 
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Use Boussinesq and Cerruti’s solution 
to remove stress at the surface 



Benchmark 

strike slip 

dip slip 

tensile dislocation 

case of strike-slip fault,
 comparison with Okada [1992]
 and Wang [2002]: 
•  less than 5% error wrt Okada 
•  comparable with Wang 
•  larger error in the near field
 (due to discontinuity
 approximation) 

Numerical code implements
 strike-slip and dip-slip fault
 and opening (or closing) cracks
 of arbitrary orientation. 



Examples 

The Fourier domain method is an attractive alternative to  
FEM in a number of applications: 
•  3-D static deformation 
•  nonlinear 3-D viscoelasticity 
•  rate-and-state fault creep 
•  poroelasticity 
•  … 

A number of mathematical issues that arise from this
 formulation (optimal choice of an initial “homogenized”
 model, convergence, existence, stability analysis,
 errors, etc) 



User Interface Example 

./static <<EOF 
# grid dimension (sx1,sx2,sx3) 
128 128 128 
# sampling (dx1,dx2,dx3), beta 
0.05 0.05 0.05 0.3 
# origin position (x0,y0) 
0 0 
# observation plane depth 
0 
# output directory 
output 
# elastic moduli (lambda,mu) 
1 1 
# observation points 
1 
1 GPS1 0.5 0.1 0 
# shear dislocations 
1 
# index slip   x1 x2 x3 length width strike dip rake 
      1    1 -0.5  0  0      1     1      0  90    0 
# tensile cracks 
0 
EOF 

simple interface produces output in: 
•  prescribed points (GPS) 
•  map view txt file (x1,x2,u1,u2,u3) 
•  Generic Mapping Tools (GMT) 

code is implemented in Fortran90 
and uses DFT fourt 

above example runs in 10s on a low-end 
laptop 


