

Problems in solid Earth deformation: crust and upper mantle

Yuri Fialko

S. Barbot J. Pearse Y. Hamiel

Institute of Geophysics and Planetary Physics Scripps Institution of Oceanography University of California San Diego

CIG, Sep. 16, 2008

Overview:

- Data-driven models
- Quest for "realistic" constitutive relationships for lithosphere, including upper (brittle) crust, lower crust, and upper mantle
- Data *require* material heterogeneity, non-linear rheologies, localization
 - models need to be sufficiently flexible to resolve multiple spatial and temporal scales
 - sufficient flexibility/efficiency in generating many realizations for inverse modeling
- Are FEM an ultimate answer?

DISPLACEMENT

DISPLACEMENT

M7.3 Landers, 1992

M6.6 Bam (Iran), 2003

Calico fault

seismic tomograpy

Time-dependent deformation following earthquakes: Common suspects

- Localized slip on or below the seismic rupture ("afterslip")
- Visco-elastic relaxation (lower crust/upper mantle; various stress-strain relationships)
- Poro-elastic rebound (incapable of large horizontal displacements; mostly vertical deformation)
- ... or a combination of the above

Fialko, JGR 2004

Post-seismic deformation due to the M7.3 Landers earthquake

"Thin viscous sheet vs Fault-block"

"Jelly Sandwich vs Crème Brule"

Step: Step-1 Increment 0: Step Time = 0.000 Primary Var: 5, 513 Deformed Var: U Deformation Scale Pactor: +3.000e+03

Thermo-mechanical coupling

Yuen et al., 1978; Fleitout and Frodivaux, 1980; Turcotte and Schubert, 2002

Equivalence between dislocations and body force couples (point-source solution)

Potency Tensor (Eigenstrain)

$$\boldsymbol{\varepsilon}^{i}(\mathbf{x},\mathbf{y}) = \frac{1}{2}(\hat{\mathbf{n}} \otimes \mathbf{s} + \mathbf{s} \otimes \hat{\mathbf{n}}) \ \delta(\mathbf{x} - \mathbf{y})$$

Moment Density Tensor

$$\mathbf{m}(\mathbf{x},\mathbf{y}) = \mathbf{C} : \mathbf{\varepsilon}^{i} = \mathbf{C} : \mathbf{s} \otimes \hat{\mathbf{n}} \ \delta(\mathbf{x} - \mathbf{y})$$

Equivalent Body Forces

$$\mathbf{f}(\mathbf{x}, \mathbf{y}) = -\nabla \cdot \mathbf{m} = -\nabla \cdot (\mathbf{C} : \boldsymbol{\varepsilon}^{i})$$

Equivalent Body Forces Are Linear Combination of 6 Double Couples

Finite Fault Source

Example for Uniform Rectangular Fault

$$\boldsymbol{\varepsilon}^{i}(\mathbf{x}) = \frac{1}{2} (\hat{\mathbf{e}}_{1} \otimes \hat{\mathbf{e}}_{2} + \hat{\mathbf{e}}_{2} \otimes \hat{\mathbf{e}}_{1}) \ \Pi \left(\frac{x_{1} - y_{1}}{L}\right) \delta (x_{2} - y_{2}) \ \Pi \left(\frac{x_{3} - y_{3}}{W}\right)$$

$$\mathbf{f}(\mathbf{x}) = -2\mu \, \nabla \cdot \mathbf{\varepsilon}^{i} = -\mu \begin{pmatrix} \Pi\left(\frac{x_{1} - y_{1}}{L}\right) \frac{\partial}{\partial x_{2}} \delta(x_{2} - y_{2}) \Pi\left(\frac{x_{3} - y_{3}}{W}\right) \\ \frac{\partial}{\partial x_{1}} \Pi\left(\frac{x_{1} - y_{1}}{L}\right) \delta(x_{2} - y_{2}) \Pi\left(\frac{x_{3} - y_{3}}{W}\right) \\ 0 \end{pmatrix}$$

Potency Tensor (Eigenstrain)

$$\boldsymbol{\varepsilon}^{i}(\mathbf{x}) = \int_{\Sigma} \boldsymbol{\varepsilon}^{i}(\mathbf{x}, \mathbf{y}) \, \mathbf{dy}$$

Moment Density Tensor

 $\mathbf{m}(\mathbf{x}) = \int_{\Sigma} \mathbf{C} : \mathbf{\varepsilon}^{i}(\mathbf{x}, \mathbf{y}) \, \mathbf{d}\mathbf{y}$

Eigenstrain characterizes:

- slip system (tensor part)
- location
- dimension

analytic expression for equivalent body forces allows:

- numerical sampling & processing
- analytic Fourier transform
- continuum representation of a discontinuous field

Greens' Function in Fourier Domain

Navier's Equation in Space Domain

 $\nabla \cdot (\mathbf{C} : \nabla \otimes \mathbf{u}) + \mathbf{f} = 0$

or, for isotropic elasticity

$$(\lambda + \mu)\nabla \nabla \cdot \mathbf{u} + \mu \nabla^2 \mathbf{u} + \mathbf{f} = 0$$

solution is

$$\mathbf{u} = \int_{\Omega} \mathbf{G}(\mathbf{x}, \mathbf{x}_0) \cdot \mathbf{f}(\mathbf{x}_0) \, dV$$

Navier's Equation in Fourier Domain

$$\mathbf{k} \cdot (\mathbf{C} : \mathbf{k} \otimes \mathbf{u}) = \mathbf{f}/4\pi$$

or

 $(\lambda + \mu)\mathbf{k} \otimes \mathbf{k} \cdot \mathbf{u} + \mu \mathbf{k} \cdot \mathbf{k} \otimes \mathbf{u} = \mathbf{f}/4\pi$

or simply, with full space elastic Greens' function

 $\mathbf{G}^{-1}(\mathbf{k};\lambda,\mu)\cdot\mathbf{u}(\mathbf{k}) = \mathbf{f}(\mathbf{k})$

Boussinesq's & Cerruti's Problems: Elastic Deformation for Surface Traction

$$\mathbf{t}_{3}(\mathbf{k}, \mathbf{x}_{3} = 0)$$

$$\mathbf{t}_{1}(\mathbf{k}, \mathbf{x}_{3} = 0)$$

$$\mathbf{t}_{2}(\mathbf{k}, \mathbf{x}_{3} = 0)$$

$$\mathbf{t}_{2}(\mathbf{k}, \mathbf{x}_{3} = 0)$$

$$\mathbf{t}_{2}(\mathbf{k}, \mathbf{x}_{3} = 0)$$

$$\mathbf{x}_{1}$$

$$\mathbf{u} = \begin{pmatrix} -2B_{1}\beta^{2} + \alpha\omega_{1}(B_{1}\omega_{1} + B_{2}\omega_{2})(1 + \beta x_{3}) + \alpha i\omega_{1}\beta B_{3}(1 - \alpha^{-1} + \beta x_{3}) \\ -2B_{2}\beta^{2} + \alpha\omega_{2}(B_{1}\omega_{1} + B_{2}\omega_{2})(1 + \beta x_{3}) + \alpha i\omega_{2}\beta B_{3}(1 - \alpha^{-1} + \beta x_{3}) \\ \alpha \beta^{2} (i(B_{1}\omega_{1} + B_{2}\omega_{2}) x_{3} - B_{3}(\alpha^{-1} + \beta x_{3})) \end{pmatrix} e^{-\beta x_{3}}$$

$$\alpha \beta^{2} (i(B_{1}\omega_{1} + B_{2}\omega_{2}) x_{3} - B_{3}(\alpha^{-1} + \beta x_{3}))$$
Use **Boussinesq** and **Cerruti**'s solution to remove stress at the surface

Benchmark

strike slip

dip slip

Okada solution (m)

case of strike-slip fault, comparison with Okada [1992] and Wang [2002]:

- less than 5% error wrt Okada
- comparable with Wang
- larger error in the near field (due to discontinuity approximation)

Numerical code implements strike-slip and dip-slip fault and opening (or closing) cracks of arbitrary orientation.

4

6

x 10⁻³

Examples

The Fourier domain method is an attractive alternative to FEM in a number of applications:

- 3-D static deformation
- nonlinear 3-D viscoelasticity
- rate-and-state fault creep
- poroelasticity

• ...

A number of mathematical issues that arise from this formulation (optimal choice of an initial "homogenized" model, convergence, existence, stability analysis, errors, etc)

User Interface Example

```
./static <<EOF
# grid dimension (sx1, sx2, sx3)
128 128 128
\# sampling (dx1,dx2,dx3), beta
0.05 0.05 0.05 0.3
# origin position (x0,y0)
0 0
# observation plane depth
0
# output directory
output
# elastic moduli (lambda,mu)
1 1
# observation points
1
1 GPS1 0.5 0.1 0
# shear dislocations
1
# index slip x1 x2 x3 length width strike dip rake
           1 -0.5 0 0
      1
                              1
                                    1
                                           0 90
                                                     0
# tensile cracks
0
EOF
```


simple interface produces output in:

- prescribed points (GPS)
- map view txt file (x1,x2,u1,u2,u3)
- Generic Mapping Tools (GMT)

code is implemented in Fortran90 and uses DFT fourt

above example runs in 10s on a low-end laptop