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I. Heterogeneous Porous Media

and Problems of Scale
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Meter-Scale Natural Heterogeneity

Logl10 X Permeability of Lawyer Canyon Logl0 Z Permeability of Lawyer Canyon
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-11.2 -11.2
-11.9 -11.9
-12.6 -12.7
-13.3 -13.4
-14.0 -14.1
-14.7 -14.9
-15.4 -15.6
-16.1 -16.3

Lawyer Canyon data, meter scale
(ranges by a factor of 10°)

Difficulty: Fine-scale variation in the permeability K leads to fine-scale
variation in the solution (u,p).
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The Problem of Scale

Suppose K varies on the scale €. Then

Vpl = O(e™ 1) and |DFp| = O(e™")

Typical error estimates. From polynomial approximation theory, the best
approximation on a finite element partition 7; is

k
h
inf _ ||p—qllo < Clpllxh" ~ C(—)
q€Pr_1(7p) €

e TO resolve p in a standard approximation, we need a grid size h < e.
That is, we must resolve K.
e If h > ¢, this is not small, and we need a new approach.
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Overall Multiscale Strategy—1

. Localization. The full PDE problem is decomposed into many
small, local, coarse element subproblems (of scale H > ¢).

. Fine-scale effects. The local subproblems are given appropriate
boundary conditions and solved on the fine scale h < ¢ (resolving
variations in K) to define a coarse scale finite element basis.

. Global coarse-grid problem. This H-scale coarse basis is used to
approximate the solution globally.

. Fine-grid construction. The finite element basis encapsulates an
h-scale fine representation of the solution.

Efficiently
implemented
O in parallel!
Ty H
Ee
h Th(Ec>




Overall Multiscale Strategy—2

e [ he problem is fully resolved on the fine scale.

e T he problem is not fully coupled. The global problem is a reduced
degree-of-freedom system.

e Computational efficiency comes from divide-and-conquer:

(a) Small, localized subproblems are easily solved (in parallel);

(b) The coupled global problem involves far fewer degrees of freedom
than the full fine-grid system (a few per coarse element), and so is
relatively easily solved.
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Some Multiscale Approaches

Variants of this strategy (Sorry, this is a very incomplete list!)

e Generalized finite elements e Multiscale finite volumes
1. Babuska, Caloz & Osborn 1994 1. Jenny, Lee & Tchelepi 2003
2. Stroubolis, BabusSka & Copps 2001 2. He & Ren 2004
Variati I Iti I IVSi 3. Ginting 2004
¢ ariational multiscale analysis 4. Hesse, Mallison & Tchelepi 2008
1. Hughes 1995 ] .
2. Hughes, Feijéo, Mazzei & Quincy ® Multiscale multigrid methods
1998 1. Moulton, Dendy & Hyman 1998
3. Arbogast, Minkoff & Keenan 1998 .
4 Brezzi 1999 e Heterogeneous multiscale
5. Arbogast 2004 methods
6. Arbogast & Boyd 2006 1. E & Engquist 2003
e Multiscale finite elements e Multiscale basis optimization
1. Hou & Wu 1997 1. Rath 2007 (Ph.D. dissertation)
. i1 B
g E?e“r{d\i/;/\f ﬁocuac'& 333 000 e Multiscale mortar methods
4. Chen & Hou 2003 1. Arbogast, Pencheva, Wheeler &
5. Aarnes 2004 Yotov 2007
6.

Aarnes, Krogstad & Lie 2006



II.

Mixed Multiscale Finite Elements
(with Boyd and Rath)
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Second Order Elliptic PDE’S in Mixed Form

Incompressible, single phase flow in a porous medium:

( u=-—-KVp inQ (Darcy's law)
¢ V-u=f in (conservation)
. u-vr=20 on 02  (BC for simplicity)

A mixed variational formulation:
Find pe W = L? and u € V = H(div) such that

(K~ 1u,v) = (p,V-v) VveV (Darcy's law)
(V- -u,w) = (f,w) VweW (conservation)
Finite elements: Solve over finite dimensional spaces V;, x W, C V x W.

W, = piecewise discontinuous constants
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The Velocity Mixed Multiscale Finite Elements

We define Vj;, on a coarse element E with edge e.

Standard Raviart-Thomas (RTO) finite element.

Z

.
( Re = —Vw - — —
) V- -Re =1/|F] 9 A P
R 1/le] one e e
"V = — —_— E—
© 0 otherwise = =
\
7
Variational multiscale finite e/ement:/
%/ - — —
( Rle\/IS:—Kvw s T e
MS _ — = —
MS 1/le] on e —~ = |e el ——=
R Y 2 . = / —_ —_— —
¢ 0 otherwise o =T = -
\
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Boundary Conditions for Local Subproblems

Neumann BCs for
constant outflow, but

oversample. (Hou et al.,
1997, 2003) Results in a
nonconforming method.

REER

Neumann BCs for linear outflow.
(Arbogast, 2000)
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Dual element problem with source and sink
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Estimates of the Pressure
and Velocity Errors
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Error Estimates from Polynomial Approximation Theory

Let L be the order of approximation of the coarse mixed finite element
velocity space used. Typically:

L=1 for lowest order
Raviart-Thomas (RTO) spaces

L=2 for lowest order — —
Brezzi-Douglas-Marini (BDM1) spaces -

Theorem (A., 2004).
H\ L
I~ willo < clul it = o (1))

V-oug =Ff

H L
Ip - prllo < Cllull HAL = o((_) H)
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Homogenization
Suppose that K is locally periodic of period €. Then
K(x) = k(x,x/¢€)
where k(x,y) is periodic in y of period 1 on the unit cube Y.

Let Ko be the homogenized permeability matrix, defined by

Ow,;(x,

wj(a y)) "
Y;

where, for fixed z, w;(z,y) is the Y-periodic solution of

Koj(2) = | x(z.y) (52-3- +

Ok
V- (kVywi) = —
Yy (hedy| ay]
Homogenized solution: Let (ug,pg) solve
( ug = —KgVpg in 2
¢ V-ug=f in
| ug-v=0 on 0%

Then (ug, pg) is a smooth “approximation” of (u,p).

S Center for Subsurface Modeling
£ _ Miuweny Institute for Computational Engineering and Sciences
The University of Texas at Austin, USA




Multiscale Error Estimates

Theorem (Chen and Hou 2003; A. and Boyd, 2005). Assuming
periodicity and the mixed variational multiscale method with L =1

(RTO) or 2 (BDM1):
I = willo < O el + | ol o + H- (ol + 17l-1)

= O(H" + \/e/H)

lp — prllo < Ce+ (¢/HYY "+ H)|lu —ugllg  (superconvergence)

where d is the space dimension and n >0 ifd=2 and n=0 if d = 3.
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Composite Numerical Grid for BDM1-RTO

eXoeXoeXeo|oeXoeXoeXeoe | oeXeoeXe0Xe

/N /N /N /N /N /N
exXoexXoeXeo|oeXoeXoeXeo|oXoeX0Xe

XK—1—X K1 XK X X
DEDUEDENNEDEDEDENEDEDE D N
exXoeXoeXoe|oeXoeXoeXeo|oeXoeXe0Xe
exXoexXoeXeo|loeXoeXoeXeoe |oXoeX0Xe
eXoexXoeXo|oeXoeXoeXeo|oeXeoeXe0Xe
eXoeXoeXo|oeXoeXoeXeo|oeXeoeXe0Xe

KX KA X X
exXoexXoeXeo|oeXoeXoeXeo|oXoeXe0Xe
eXoeXoeXeo|oeXoeXoeXeoe | oeXeoeXe0Xe
eXoeXoeXo|oeXoeXoeXeo|oXeoeXe0Xe

KX K—1AK X X
exXoexXoeXeo|oeXoeXoeX0o|oXoeX0Xe
DD DENNEDEDEDENEDEDE D N

X Subgrid velocity

® Coarse velocity (linear)

e Pressure

We fully resolve K, but only partially couple the dynamics.
Center for Subsurface Modeling
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Numerical Examples and Application
to Subsurface Flow Simulation
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Application to Waterflood Simulation

Use standard equations and sequential solution.

Pressure equation: Global pressure formulation.

0
a—(f+v-u=q(P)

u=—K\S) (VP _ p(S)ge3)
Upscale this equation. Use BDM1/RTO unless otherwise noted.

Saturation equation: Kirchhoff formulation.

0¢S B
W‘l'v'uw—Qw(S)

uy = —KVQ(S) + c(u, 5)

Solve on the fine scale.
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A Fluvial Subsurface Environment—1

BK= 01D
K= 10D
[JK=10.0D
Permeability field

(White & Horne, 1987)

J

Upscaled to 6 x 6 Upscaled to 3 x 3
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A Quarter Five-spot Oil Reservoir Waterflood

Logarithm of the permeability

Log10 of X-Fermeability

0 5 10 16 20y 25 30 35 40

Fine 40 x 40

-11.746
-12.008
12273
-12.536
-12.800
-13.063
-13.326
-13.580
-13.833
-14. 116
-14.350
-14.643
-14 806
-15170
-15.433
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A Quarter Five-spot Oil Reservoir Waterflood—2

Water saturation contours at 100 days

FINE SCALE SATURATION Saturati UPSCALED SATURATION
Example1: 40 X40 at time 100 days
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0.450
0.425
0.400 .
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0.325 7]
0.300 ]
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0_2501 0 -
0.225
0.200

Example1: 40X40 to 5X5 at time 100 days
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A Quarter Five-spot Oil Reservoir Waterflood—3

Water saturation contours at 200 days

FINE SCALE SATURATION
Example1: 40 X40 at time 200 days
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UPSCALED SATURATION
Example1: 40X40 to 5X5 at time 200 days

5 10 15

20

2b 30 35

Fully upscaled to 5 x 5
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A Quarter Five-spot Oil Reservoir Waterflood—4

Water saturation contours at 500 days

Saturation

Saturatk UPSCALED SATURATION

FINE SCALE SATURATION

Example1 : 40 X40 at time 500 days e Example : 40X40 to 5X5 at time 500 days PR
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A Quarter Five-spot Oil Reservoir Waterflood—5

Water saturation contours at 1000 days

Saturation

Saturatk UPSCALED SATURATION

FINE SCALE SATURATION

Example1 : 40 X40 at time 1000 days e Examplel : 40X40 to 5X5 at time 1000 days e
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A Quarter Five-spot Oil Reservoir Waterflood—©6

Water saturation contours at 500 days

UPSCALED SATURATION
Example1: 40X40 to 5X5 at tine 500 days

COARSE SCALE SATURATION
Example 1:40X40Q to 5X5 at time 500 days

LI OIIIIIIII
0 5 10 16 20 2b 30 3b 40 0 5 10 16 20 2b 30 3b 40

Fully upscaled to 5 x5 Coarse 5 x 5
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III. A Multiscale Mortar
Mixed Finite Element Method

(with Pencheva, Wheeler, and Yotov)
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Basic Idea of the Multiscale Mortar Mixed Method

1. Localization. Divide 2 into many small subdomains (or coarse
elements of scale H), over which the original PDE is imposed.

2. Fine-scale effects. The subdomains are given Dirichlet boundary
conditions p = X on [ and solved on the fine scale h to define the
local solution.

3. Global coarse-grid problem. The weakly defined flux mismatch
(jump in u-v) on I is used to define a better A on scale H > h, and
we iterate the previous step until convergence is attained.

4. Fine-grid construction. We obtain a fully resolved and fully coupled

approximate solution if A is approximated in a higher order space.

. . 4 r 25
By using a higher order mortar -

approximation, we compensate for

the coarseness of the grid and h
T 2

maintain good (fine scale) overall ’

accuracy. h1 | Q
)\.\H
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Domain Decomposition Variational Form

Differential Equations.
I’ij = 0¢2; N 8Q] [; = 0%2; \ Q2

K lu=-Vp inQ (subdomain Darcy's law)
V-u=f in Q, (subdomain conservation)
u;-v;+u;-v; =0 on I;; (conservation on interface IN)

N\

plo, = p|Qj on I;; (continuity of p on M)
p=20 on 92  (BC for simplicity)

\

Variational form. Find u € H(div;2;), p € L?(2;), A=p € HY/2(I;;):

(KT, v)g, =0,V Vg, — (L v w)r,  Yve H(div; Q)
] (V-u,w)g, = (f,w)g, Vw € L7(;)

Y (u-vj,pyr, =0 Ve HY2(1y))
\ 7/

Remark. The last equation enforces continuity of flux on I = U [;.
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Multiscale Mortar Mixed Method
Finite element spaces.

e Subdomain. V; ; x Wy, ; is the usual mixed space with polynomials of
degree kK — 1 on mesh of spacing h > 0 on €2,.
e Mortar. MH,Z-]- IS continuous or discontinuous polynomials of degree

m — 1 on mesh of spacing H > h on I’ij.
Ql [ QQ

Key idea. On the interface
e Use only a few degrees of freedom

(manage the linear algebra). ¥ ho
e Use higher order approximation ’
(maintain accuracy). h1 _ Q
)\NH
Mortar method. Find ujy € Vy, pp, € Wy, Ag € M such that
(K Yy, v, = (0h, V- V), — (Mg, v - uir, Vv E Vi
! (Vup,w)q, = (f,w)q, Vw e Wp;
> (v pyr, = Vu € My
i

Remark. The last equation enforces weak continuity of flux on I.
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Implementation and
Multiscale Finite Elements

<
l=l %
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An Interface Problem
Define the bilinear and linear forms on My by

dH()‘alu) — ZdH,Z(A7 :u) - - Z(u;kL()‘) : Via:u>|_2'

7

g () =3 _gmi(n) = Y _(Up - vi, pr,

where (uj (M), pr (X)) € Vi x Wy, solves (A given, f=0)
(K tup(\),v)a, = (0h(V), V-V, — (A v -u)r, Vv EVy,
(V- U.Z()\),’w)Qi =0 Vw € Wh,i
and (uy,p) € Vi, x Wj, solves (A =0, f given)

(K Y, v)g. = (0p, V- V)q, Vv E Vy,
(V-up,w)o, = (f,w)o, Vw e Wy ;

T heorem.
dig (Mg, pn) = gr(p) VY€ My
if, and only if,
u, = u;(A\y) + 4y and pn, = pp,(Arr) + by,

Center for Subsurface Modeling
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Domain Decomposition Iteration
(Glowinski & Wheeler, 1988; A., Cowsar, Wheeler & Yotov, 2000)

Interface problem. Find A\g € Mgy such that
dg (Mg, m) = gu(p) Ve € My

Theorem. The interface bilinear form dg(-,-) is symmetric and positive
definite on Myy.

Thus, our problem reduces to a symmetric and positive definite linear
system, and it can be solved by conjugate gradient iteration (for
example). The computations involve:

e Once solving for (uy,py) to get gy(p).
e Many times solving for (u}';()\%),p}i()\%)) to get di(\%y, ).

This seems like a natural way to obtain the solution.
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Mortar Degrees of Freedom

Let {uy} be a basis for My = span{u,}. Define
ve = uy,(pg) and wyg = pp (1)
Then

Ag =) Mpg and w, =) A\vy+1U, and p,=> Nwy+ Py
¢ ¢ ¢

Find {\/} such that

> Nedp (e, pg) = g (pg) Yk
]

IS equivalent to

_]_ _
ZAE(K Vg,Vk) - (f7 wk)
4
This is another natural way to solve the problem!
Center for Subsurface Modeling
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Let

Multiscale Finite Elements

Nh’H = span{ (

V¢
wy

)

uy (1)
Py (e)

Jjel

Vi,
Wh

Multiscale finite element formulation. Find (uh> € Ny g+ (gh> SO that
’ h

Ph

(K~ tuy, v) = (fw) ¥ (1‘;) € Ny H

Remarks. This is an unusual multiscale finite element method!
e \We couple pressures and velocities.

e We allow flow on all edges.
e We add a constant term to the
solution, as is typical of variational

Mmultiscale methods.

e Our multiscale finite elements are
locally defined over the subdomains

(i.e., the course elements).

77 -< ~— = =
- - e
d . ~
= I\
-~ Iy
— | &
— — // =
T = - S <
7 7
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Analysis of Errors
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A-Priori Error Estimates

Theorem. There exists (', independent of h and H, such that
k —1/2 krrl/2
lu—wyllo < C{llulleh® + llpllng1/2H™ 2 4+ [ullgpq ph HY 2}

=o(() +1()" T+ (D7)

Ip = prllo < C{IPlKh" + lIpll g1 o H™ T2
+ (If1lx + llullp)r"H + ||u||k-|-1/2th3/2}

=o((®)"+ () ) ())

Remark. We can also obtain superconvergence results.

Problem of Scale and Adaptivity. We turn to an a-posteriori error
analysis and an iterative grid refinement process to resolve the coupling

dynamics.



Explicit Residual-Based Estimators: Upper Bounds
For all E € 7;% and 1 € T},

Wi = |IK " wy, + Vpplzhs + If — V- uy|5hs  (Residuals)

+ 1Mt — PrllgEarhEe (Pressure mismatch)
w2= " |y, V5pnH (Flux mismatch)
EcE;

Theorem. There exists a constant (', independent of h and H, such that

1/2
||p—ph||O§C! S owr 4+ Y w%}

‘EETQ TETr
1/2
2 2
||u—uh||o<c1 > hpeR+ Y HY }
E€T;? TeT),

Saturation Assumptions. We need sufficient resolution that the coarse
approximation contains some ‘reasonable” information about the
solution, so that we can detect inadequate resolution. These saturation
assumptions are justified by the a-priori error theorem.
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A Nonstandard Multiscale Analysis
This analysis is not a standard multiscale analysis.

e A-posteriori error indicators are computed from the input data and
the computed solution.

e The error indicators drive adaptive mesh refinement (AMR).

e Through AMR iteration, the numerical solution is obtained on
appropriate subdomain and mortar grids.

2 r 25 2 r 25
i -
_ . xT .
>-- Q e Q
A A

Remark: We detect the multiscale nature of the solution through this
a-posteriori analysis of AMR intermediate approximation results.
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Some Numerical Results
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Ex. 1—A Smooth Case with a Full Tensor—1

A 2-D smooth problem with known analytic solution
p(z,y) = 3y* + 22 + sin(zy) cos(y)

and full tensor coefficient

K:<<x+1>2+y2 sin(zy) )
sin(zy) (@ +1)2 )°

Remarks.

e Use lowest order Raviart-Thomas spaces (RTO).
e Solve using conjugate gradients and a balancing preconditioner.
e Use the scaling H = hl/2 for m = 3 and H = 2h for m = 2, which is

optimal for superconvergent velocities.
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Ex. 1—A Smooth Case with a Full Tensor—2

Computed pressure and velocity on nonmatching grids.
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=
B 2 2o
///‘/ %
=
/‘/7// l—
A = 55
£ A 1 1
BT RS % e
LT 2 C 2]
’/‘,/‘,///‘// = // |~ //
’/l/[///‘//:‘_/ /Z// /‘/ ///
,/‘,/‘,/////‘/ - - - - -
P S S S = L~ — L
S Y = = L~ - L —
D S S A
P Y =~ = —
AR s e
P P
P = = P ey
| ' P |
Discontinuous quadratic mortars Discontinuous linear mortars
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Ex. 1—A Smooth Case with a Full Tensor—3

Error in pressure and velocity on nonmatching grids.

Discontinuous quadratic mortars Discontinuous linear mortars

Conclusion. Quadratic mortars do a better job near the interface I.
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Ex. 1—A Smooth Case with a Full Tensor—4
Discontinuous quadratic mortars and nonmatching grids.

1/h |Iter Cond | [|p — ppll | |[u—up|| | |[lp — pplll | [[lu — upl]]
4 8 | 18.8 |2.64E-1|2.03E-1 | 4.62E-2 | 2.13E-2
16 7 2.5 16.37TE-2| 4.86E-2 | 2.83E-3 | 1.82E-3
64 7 2.3 |1.59E-2 | 1.21E-2 | 1.75E-4 | 1.59E-4
256 3 3.0 |3.98E-3 | 3.03E-3 | 1.09E-5 | 1.68E-5
Rate 1.01 1.01 2.01 1.72
T heor 1.00 1.00 1.50 1.25
Discontinuous linear mortars and nonmatching grids.
1/h_|Iter| Cond||lp — pl| | |lu — wpyl | [Ilp — pulll | [lJun — uyl]
4 4 | 1.31 |2.63E-1|2.04E-1 | 4.54E-2 | 2.35E-2
16 7 | 2.12 |6.37E-2|4.86E-2 | 2.82E-3 | 2.30E-3
64 8 | 3.27 |1.59E-2| 1.21E-2 | 1.75E-4 | 2.38E-4
256 8 | 5.02 |3.98E-3| 3.03E-3 | 1.09E-5 | 2.74E-5
Rate 1.01 1.01 2.01 1.63
T heor 1.00 1.00 2.00 1.50

Conclusions.

e The solution procedure is efficient (# iterations ~ constant).
e Continuous and discontinuous mortars give similar errors.
e Matching or nonmatching of the subdomain grids is not important.



Ex. 2—A Highly Heterogeneous Case
A heterogeneous permeability from the 2001 SPE Comparative Solution

Project 10. It varies more than five orders of magnitude.

o pres
ermeability
5000
4736.89
4473.79
4210.68

0.9990
0.9464
0.8939

0.8413
3947.58 0.7887
3684.47 0.7361
3421.37 0.6836
3158.26 0.6310
2895.16 0.5784
2632.05 0.5258
2368.95 0.4733
2105.84 0.4207
1842.74 0.3681
1579.63 0.3155
1316.53 0.2630
1053.42 0.2104

0.1578
0.1052
0.0527
0.0001

790.316
527.211
264.105
1

1/h |Iter | Cond Pressure and velocity.
4 4 3.6 Discontinuous quadratic mortars
16 | 17 | 48.7 and matching grids.
64 | 22 | 45.1
256 | 26 | 31.2
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Ex. 3—A Boundary Layer Case
Pressures with single discontinuous quadratic mortar on each interface.

pres pres
18.00 18.00
17.00 17.00
16.00 16.00
| 15.00 | 15.00
1 14.00 1 14.00
] 13.00 ] 13.00
[ 12.00 [ 12.00
[ 11.00 [ 11.00
[ 10.00 [ 10.00
1 9.00 1 9.00
| 8.00 | 8.00
| 7.00 | 7.00
[ 6.00 [ 6.00
[ 5.00 [ 5.00
4.00 4.00
3.00 3.00
2.00 2.00
1.00 1.00

Refinement level 1 Refinement level 2
pres pres
18.00 18.00
17.00 17.00
16.00 16.00
| 15.00 | 15.00
] 14.00 ] 14.00
| 13.00 [ 13.00
1 12.00 1 12.00
[ 11.00 [ 11.00
T = 10.00 = 10.00
| 9.00 | 9.00
| 8.00 | 8.00
] 7.00 ] 7.00
| 6.00 | 6.00
| 5.00 | 5.00
| 4.00 ] 4.00
3.00 3.00
2.00 2.00
f 1.00 1.00

I

Refinement level 3 Refinement level 4



Summary and Conclusions
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Summary and Conclusions
1. Multiscale Numerical Method handle scales through:
e Localization into small coarse elements or subdomains;
e Fine-scale effects through solution of the local subproblems;
e Global coarse-grid problem using the fine-scale information;
e Fine-grid construction of the approximate solution.

2. Multiscale finite elements resolve fine scales on coarse grids, and
they converge with respect to the scale of heterogeneity.

3. Multiscale mortar methods reduces to a linear system for the
interface mortar degrees of freedom and is solved either using
e domain decomposition iteration;
e Or multiscale finite elements that couple pressures and velocities.
A nonstandard multiscale analysis shows that a-posteriori error
indicators can be used to iteratively adapt the mesh to the solution.

4. Numerical results show that we can resolve the main components of
the flow for very large problems on very coarse grids, even though we
under-resolve the fine scales themselves.
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