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Introduction

• Because of a wide range of scales, direct numerical simulations are not affordable
for subsurface simulations, model calibration, uncertainty quantification, reservoir
optmization.

• Typically some type of coarsening is needed. Two type of approaches are
commonly used: upscaling and multiscale.

• Some of the main challenges in coarsening subsurface processes are modeling
the effects of non-separable scales and uncertainties.

• In this talk, we discuss approaches which capture the effects of spatial scales and
uncertainties.
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Coarse and fine

Consider
Lp = f,

where Lp = −div(k(x)∇p). Our goal is to solve this equation on a coarse grid.
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Schematic description of coarse grid
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Upscaling

K

Coarse−grid Fine−grid

• Consider div(k∇p) = f .

• For each coarse grid block, div(k∇φi) = 0 is solved in K with φi = xi on ∂K.

• k∗
·,i = 1

|K|

R

K
k∇φidx

• The coarse-scale equation div(k∗∇p∗) = f is solved to find the upscaled solution.
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Requirements/Challenges

• Upscaling (multiscale) computes local effective parameters (basis functions) that
can be used repeatedly for different source/boundary conditions and the local
changes only affect a few parameters (basis functions).

• Accuracy and Robustness
• Valid for different types of subsurface heterogeneity
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• Some advantages: (1) parallel multiscale basis function construction (which can
be very cheap if there is scale separation); (2) re-use of basis functions; (3)
adaptive downscaling
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Outline

• Multiscale finite element methods (MsFEMs). Subgrid capturing errors and
possible improvements.

• Extension of MsFEMs to nonlinear problems

• MsFEMs using limited global information for problems with non-separable scales.

• Ensemble level MsFEMs
• Applications to two- and three-phase flow and transport.

• Coarse gridding.
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Multiscale finite element methods

Hou and Wu (1997) (cf. Babuska and Osborn, 1984).

• Multiscale finite element methods have 2 ingredients: (1) multiscale basis
functions; (2) a choice of global coupling of these basis functions.

• Basis functions attempt to capture the small scale information of the multiscale
process under the consideration and allow us to perform downscaling.

• Basis functions are constructed by solving the leading order homogeneous
equation in an element K (coarse grid or RVE)

L(φi) = 0 in K,

K is a coarse grid block.

• Boundary conditions for the basis functions are very important.
• Basis functions are coupled via a global variational formulation. p ≈

P

i piφi,
where

〈L(
X

i

piφi), φ̃j〉 = 〈f, φ̃j〉,

e.g., φ̃i are standard piece-wise linear basis functions.
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Basis functions
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Example
of basis functions. Left: basis function with K being RVE. Right: basis function with K

being a coarse element
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Relevant methods

• Classical upscaling or numerical homogenization.

• Subgrid modeling (by T. Arbogast, I. Babuska, T. Hughes, ...)

• Multiscale finite volume methods (P. Jenny, H. Tchelepi, S.H. Lee and others).
• Subgrid stabilization (by F. Brezzi, L Franco, T. Hughes, ...).

• Heterogeneous multiscale methods (E, Engquist,...)

• Numerical homogenization using two-scale convergence (C. Schwab, V.H.
Hoang,...)

• Numerical homogenization (A. Bourgeat, A. Madureira, M. Sarkis, Cao, ...)

• Mortar upscaling (T. Arbogast, M. Peszynska, M. Wheeler, I. Yotov,...)

• Variational coarsening (D. Moulton and S. P. MacLachlan)

• ...
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Capturing subgrid effects. Localization errors

• What is the effect of local (polynomial, reduced) boundary conditions on the
convergence of MsFEM?

• The effects of local boundary conditions are studied for e.g., periodic problems,
such as k(x, x/ǫ).

• It was shown (Hou, Wu, Cai, Math. Comp. 1999) that MsFEMs suffer from
resonance errors (( ǫ

h
)β) due to the fact that the boundary conditions of basis

functions do not match oscillations which are present in the global solution.

• A remedy is to use larger domains in constructing multiscale basis functions.

Fine−gridCoarse−grid
Oversampled
  domain

S

K
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Extension to nonlinear problems

• In a number of papers with my collaborators, we have extended MsFEMs to
nonlinear problems and analyzed these methods. In this extension, multiscale
basis functions are replaced by multiscale maps.

• Consider Lp = f , where L is a nonlinear operator (e.g.,
L(p) = pt − diva(x, t, u,∇u) + a0(x, t, u,∇u)). L : X → Y .

• For each element vh ∈ Wh (where Wh is a usual FE space on the coarse space),
vr,h = EMsFEMvh is defined as

Lmapvr,h = 0 in K,

where Lmap, in general, is different from L.

• Find ph ∈ Wh such that

〈Lglobalpr,h, vh〉 = 〈f, vh〉, ∀vh ∈ Wh,

where 〈·, ·〉 denotes a duality between X and Y Lglobal is different from L, in
general.

• These methods are analyzed for monotone and pseudomonotone operators.
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Two-phase flow and transport

A protypical example is two-phase immiscibe flow (e.g., water and oil).

−div(λ(S)k(x)∇p) = q,
∂

∂t
S + v · ∇f(S) = qw,

where v = −λ(S)k(x)∇p.

• Various upscaling methods are developed for multi-phase flow and transport, e.g.,
single-phase upscaling, multi-phase upscaling, ...

• We will coarsen the pressure equation and solve the saturation equation on the
fine grid.

• Note that the pressure equation has the form

−div(λ(x, t)k(x)∇p) = q,

where λ(x, t) is smooth and changes in time. We will compute the basis functions
at time zero and use it throughout the simulations with changing them.
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Two-point geostatistics
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saturation plot at PVI=0.5 using standard MsFVEM
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Channelized permeability fields

Benchmark tests: SPE 10 Comparative Project
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The use of limited global information

• The numerical tests using strongly channelized permeability fields (such as SPE
10 Comparative) show that local basis functions can not accurately capture the
long-range information. There is a need to incorporate non-local information.

• Construct basis functions to approximate

div(λ(x)kr(x)∇p) = g(x),

for any λ(x) and g(x) that vary on the coarse grid (smooth function).

• Some type of global information is needed, e.g.,

div(kr(x)∇p0) = f(x),

p0(x) = p(x) on ∂Q.

• Previous work: L. Durlofsky et al., 1997,... Perform coarsening and coarse-scale
parameters based on “single-phase” solutions. Later on: Y. Chen and Durlofsky,
2005; J. Aarnes, 2004; X.H. Wu et al. 2006;
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The use of global information

• For subsurface applications, we need numerical methods which (1) are
conservative (i.e., reconstructed fine-scale velocity field v = −k∇p is a
conservative field) (2) can handle unstructured fine and coarse grids.

• Assume that the important global information can be incorporated into some
spatial fields, p1, ..., pN . More precisely, we assume

p ≈ G(p1, ..., pN )

where G is a smooth function.
• Coarse grid block is a connected union of fine grid blocks.
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Basis construction

• Consider vi = k∇pi. Then, the velocity basis functions are given by
Ψei

= k(x)∇φ, where

div(k(x)∇φ) =
1

|K|
in K

and k(x)∇φ · n = vi·n
R

el
vi·nds

on ei and 0 otherwise.

• Pressure is discretized by piecewise constants.

• The multiscale basis functions are coupled via the mixed finite element framework.
• Unstructured (corner-point) fine-grid is used. The requirement for a coarse grid is

that it is a connected union of fine grid blocks. Mimetic FD is used for solving local
problems.

Neighboring coarse grid block

Non−zero flux boundary condition

Zero flux boundary condition

K

φi,jdiv(k        )= 
|K|
−−
1
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Global fields

For a realization of the media, pi can be

• (1) the solution of single-phase (it can be shown that for channelized media,
ptp ≈ G(psp, t), where div(k∇psp) = 0 (Efendiev et al., 2006).

• (2) the solutions of directional flows (Owhadi and Zhang, 2006). It is shown that
p = p̂(u1, u2) ∈ W 2,s(Q), where −div(k(x)∇ui) = 0, ui = xi

• (3) the solution in RVE (in ǫ-period) in the case of scale separation.

For stochastic media properties, pi are representative fields representing the stochastic
multiscale solutions across the ensemble.

• The convergence independent of resonance errors has been shown in Aarnes,
Efendiev and Jiang, SIAM MMS 2008 for quasiuniform meshes as well as for
highly anisotropic grids.

• No need for matching grids.
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Approximate global fields

• “Global” fields represent some important features which “can not be” captured via
local approximations.

• Approximate global fields can be used in the simulations.

• Iterative MsFEM. The global fields are obtained via the solutions of MsFEM with
oversampling. This is iterated until convergence (Durlofsky et al., 2007, Hajibeygi
et al., 2008)

• Global fields are computed via upscaling of fine-scale problems to a grid finer than
the coarse grid. The objective is to preserve long-range information in permeability
fields.

• For the analysis, kδ>,ǫ is used as the reference permeability and k∗
δ> for a

coarse-scale permeability (Efendiev and Jiang, 2008).
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Channelized reservoir
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Comparison of saturation profile at PVI=0.5: (left) fine-scale model, (middle) standard
MsFVEM, (right) modified MsFVEM
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Numerical results

Reference saturation at PVI=1
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Numerical results

Relative Errors (layer=40, µo

µw
= 3)

coarse grid frac. flow error saturation error frac. flow error saturation error
(global) (global) (local) (local)

6 × 10 0.0144 0.0512 0.1172 0.2755
12 × 11 0.0093 0.0435 0.2057 0.3459
12 × 22 0.0039 0.0370 0.1867 0.3158
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Numerical results
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Some issues: Multiscale well modeling,...
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Unstructured coarse grid

permeability field
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• Geological models are often constructed using highly anistropic corner-point grid
at the fine scale. The coarsening of this grid will ultimately lead to unstructured
coarse grids.

• The upscaling of saturation equation often requires non-uniform coarsening. Thus,
for full upscaled models, we need MsFEMs on unstructured grids.

• The coarse grid is obtained by grouping high and low values of |v| of single-phase
flow (J. Aarnes, Hauge, Efendiev, ADWR 2007).
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Numerical example

reference
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Numerical example

Unstruct. coarse sat err. water-cut err. sat. err. sat. err. (struct. grid)
(number of blocks) (due to MsFEM) (due to MsFEM) (total) (total)

180 0.0047 0.0030 0.1936 0.3263 (10x20)
299 0.0040 0.0023 0.1536 0.2831 (15x22)
913 0.0035 0.0012 0.1005 0.2019 (20x44)

Unstruct. coarse sat. err. sat. err. (struct. grid)
(number of blocks) (total) (total)

180 0.0097 0.0130 (10x20)
299 0.0080 0.0125 (15x22)
913 0.0062 0.009 (20x44)
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Numerical results
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Multiscale methods for stochastic flow eqns

• Uncertainties are present in porous media, especially at the fine-scales,
k = k(x, ω).

• E.g., if Y (x, ω) = log(k) can be described with 2 point correlation function,
R(x, y) = E(Y (x, ω)Y (y, ω)), then k(x, θ) = exp(

P

i θiΨi(x)), where Ψi(x) are
pre-computed functions based on the covariance matrix and θi are iid.
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• Our goal is to build apriori basis functions that can be used for any realization to
solve the flow equations on the coarse grid.

• The pre-computed basis functions are constructed based on selected realizations
of the stochastic permeability field.
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Ensemble level multiscale finite element method

1. Generation of coarse grid.

2. Construction of multiscale approximation space Vh:
• Select N realizations of the permeability field.
• For each selected realization i;

• Compute the global information for a particular realization ui.
• Compute multiscale basis functions: For each edge eK

l compute Ψk
l .

• Define Vh(ki) =
L

l,K ΨK
l .

• Define Vh =
LN

i=1
Vh(ki).

3. Rapid multiscale computation of velocity solutions for stochastic porous media flow
with precomputed basis functions (from Step 2) for each individual arbitrarily
chosen realization, e.g., for uncertainty quantification, history matching, etc.

• Select a family of arbitrary realizations.
• For each arbitrarily selected realization, solve coarse-scale equations with

pre-computed basis functions.
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Numerical setting

• Gaussian:

R(x, y) = σ2 exp
“

−
|x1 − y1|2

2L2

1

−
|x2 − y2|2

2L2

2

”

.

k(x, θ) = exp(
PN

i=1
θiΨi(x)). For permeability fields in our numerical experiments,

there are about 10-15 terms in KLE. For Gaussian fields, we will be using 1st order
sparse interpolation points.

• Exponential variogram

R(x, y) = σ2 exp
“

−
|x1 − y1|

L1

−
|x2 − y2|

L2

”

.

The expansion of the permeability in our numerical tests requires many terms
(about 300-400 for our problems). We take 10 independent realizations and form
basis functions.

• Fine-scale grid is 100 × 100. Coarse-scale grid is 5 × 5.

• krw = S2, kro = (1 − S)2, µo/µw = 10.
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Numerical results. Exponential variogram

Reference saturation solution at 6.000000e−01 PVI
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Logarithm of permeability
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A realization of the permeability and the comparison of the reference saturation field and
the saturation profile obtained with multiscale method at PV I = 0.6. Exponential case
with L1 = 0.3, L2 = 0.1, σ2 = 2.
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Numerical results. Gaussian variogram
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L2 errors of the saturation field and water-cut errors for 100 randomly chosen
realizations. Gaussian field with l1 = l2 = 0.2, σ2 = 2.
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Numerical results. Exponential variogram
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L2 errors of the saturation field and water-cut errors for 100 randomly chosen
exponential variogram fields with l1 = 0.5, l2 = 0.1, and σ2 = 2.
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Extensions

One can also consider hierarchical models representing facies. Stochastic level set
equations are used to characterize the “movement” of facies’ boundaries and two-point
correlation functions are used to describe the permeability within each facie.

changing dimension

Log−normal field 2

Log−normal field  1

Log−normal field 3

changing dimension
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Summary

• An important part of MsFEMs is to construct the multiscale basis functions which
can accurately capture the subgrid effects through judicial choice of local
boundary conditions.

• MsFEM type methods can be extended to nonlinear problems.
• For problems with strong non-local effects, some type of limited global information

is needed to capture the long-range effects.

• The non-local information is based on solutions of some global problems (e.g.,
oversampling).

• Coarsening.

• The extensions of MsFEMs to stochastic problems. The main idea is to construct
multiscale basis functions which can capture the spatial information and
heterogeneities.

• Adaptivity in “uncertainty” space can be used to achieve localization.

• Applications.
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