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Single-Phase Flow

Steady-state flow of a fluid that entirely fills the pore-space of a porous
medium (e.g., porous rock), may be described by,

∇ · u = Q(r) (mass conservation)

u = −K(r)
µ
∇p (Darcy’s law)

for r ∈ Ω and subject to appropriate boundary conditions.
Here the variables are defined as follows:

u fluid velocity
p pressure
K(r) absolute permeability
µ fluid viscosity
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Motivation for Multilevel Methods

Multilevel Modeling

multilevel approximate solution must be cheaper than an optimal
solution of the fine-grid problem (this is often violated by two-level or
two-scale methods)
we want large coarsening factors (i.e. 100 in each direction).
we cannot rely on scale separation
we want to control the trade-off between accuracy and cost
we can leverage ideas and frameworks from multigrid solvers
there is excellent potential for building algorithms with error estimation
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Multigrid

It’s not just for solving equations anymore!

It provides a framework for constructing
multilevel multiscale simulations algorithms.
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The Residual or Defect Equation

Let u be the exact solution and u(i) be the current iterate.
The error associated with the current iterate:

e(i) = u− u(i)

The residual associated with the current iterate:

r(i) = f − Lu(i) = Lu− Lu(i) = L
(
u− u(i))

Combining these definitions we obtain the residual equation

Le(i) = r(i)

which will play a key role role in our development of the multigrid algorithm
(particularly approximations to it).
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Two Grid Iteration: Correction Scheme (CS)

Schematic of the two-grid CS iteration
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The associated iteration matrix is

GH
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h KH
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h with KH
h = Ih −

(
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H IH
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The Nonlinear Residual Equation

Consider a nonlinear equation, N(u) = f . Let u be the exact solution
and u(i) be the current iterate.
The error associated with the current iterate:

e(i) = u− u(i)

The residual associated with the current iterate:

r(i) = f − N(u(i)) = N(u)− N(u(i))

We can’t combine these definitions as easily to obtain an equation relating
the residual and the error, but we can write

r(i) = N(u(i) + e(i))− N(u(i))

which will play a key role role in the development of the Full Approximation
Scheme (FAS) multigrid algorithm.
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Two Grid Iteration: Full Approximation Scheme (FAS)

Schematic of the two-grid FAS iteration
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Comments:
If N is linear, then the FAS and CS iterates are identical
The coarse-grid equation may be written,
NH(u(j)

H ) = f H + τH
h with τH

h = NH(IH
h û(j)

h )− IH
h Nh(û(j)

h )

J. David Moulton Multilevel Modeling: Multigrid’s Lost Twin

http://math.lanl.gov/~moulton/


Background
Multigrid/Multilevel Upscaling and Solvers

Multilevel Modeling
Conclusions

Two Level Methods: Linear and Nonlinear
Robust Multigrid Algorithms
Variational Coarsening and Multilevel Basis Functions

Motivation for Multilevel Methods

Which scale is up, in the full approximation scheme (FAS)

“Instead of regarding the coarse grid as a device for accelerating
convergence on the fine grid, we can view the fine grid as a device
for calculating the correction, τH

h , to the coarse-grid equations.”

(Brandt, Multigrid Techniques: 1984 Guide)

W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid Tutorial, SIAM Books, 2000.
U. Trottenberg, C. Oosterlee, and A. Schuller, Multigrid, Academic Press, 2001.
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Schematic of Multigrid Cycles

Multigrid uses coarser resolutions recursively to obtain an approximation to
the error at the finest resolution
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Convergence rate is independent of the grid resolution,
Solving Poisson problems on structured grids using a V(1, 1)-cycle achieves
a convergence rate of ≈ 0.05.
Solving diffusion problems with highly discontinuous coefficients using a
V(1, 1)-cycle achieves a convergence rate of ≈ 0.05− 0.25.
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Robust Multigrid on Structured Grids: BoxMG

Coarsening:
selected a priori, e.g., standard or semi-coarsening

Smoothing:
selected to complement the coarsening/interpolation
standard coarsening: alternating line (2D), plane relaxation (3D)

Interpolation: Ik
k−1

constructed from the discrete operator Lk

approximately preserves the continuity of u · n
Variational Coarse Grid Operator: Lk−1 = (Ik

k−1)∗LkIk
k−1

minimizes the error in the range of the interpolation
Restriction: Jk−1

k =
(
Ik
k−1

)∗
dictated by variational principle, and preserves symmetry of Lk
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Robust Multigrid on Unstructured Grids: AMG

Smoothing:
selected a priori, e.g., point Gauss-Siedel

Coarsening:
multipass selection designed to complement smoothing/interpolation
heuristics relate stencil weights to algebraically smooth errors

Interpolation: Ik
k−1

constructed from the discrete operator Lk

based on chosen coarse grid and algebraically smooth errors
Variational Coarse Grid Operator: Lk−1 = (Ik

k−1)∗LkIk
k−1

minimizes the error in the range of the interpolation
Restriction: Jk−1

k =
(
Ik
k−1

)∗
dictated by variatinal principle, and preserves symmetry of Lk
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Is there an optimal coarse-grid operator?
Objective: Minimize the error in the range of the interpolation

Consider the equivalent variational formulation:

uh = min
v∈H

{
L [v] ≡ 1

2
vTLhv− vT fh

}
Let ũh be an approximation obtained after smoothing, then the error
eh ≡ uh − ũh is smooth and is well approximated on a coaser grid.
Substituting the interpolant, uh ≈ ũh + Ih

2he2h, into the functional

L [uh] =
(
ũh + Ih

2he2h)T
Lh
(
ũh + Ih

2he2h)− (ũh + Ih
2he2h)T

fh

∂L
∂e2h = 0⇒ (

Ih
2h

)T
LhIh

2he2h =
(
Ih
2h

)T (
bh − Lhũh)

This implies that the coarse-grid operator is given by

L2h =
(
Ih
2h

)T
LhIh

2h and f2h =
(
Ih
2h

)T (
fh − Lhũh)

A. Brandt, Multigrid Techiques: 1984 Guide with Applications to Fluid Dynamics, The Weizmann Institute of Applied Science, 1984.
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Let ũh be an approximation obtained after smoothing, then the error
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eh ≡ uh − ũh is smooth and is well approximated on a coaser grid.
Substituting the interpolant, uh ≈ ũh + Ih
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Multilevel Interpretation of Basis Functions
Consider a fine-scale bilinear FEM discretization on grid level k,(

Lk
)

ij = eT
j Lkei =

∫
Ω

(
K(r)∇ϕk

i ,∇ϕk
j

)
dΩ

Variational coarsening leads to(
Lk−1

)
ij

=
([

Ik−1
k

]T
LkIk

k−1

)
ij

=
[
Ik−1
k ek−1

j

]T
Lk
[
Ik−1
k ek−1

i

]
=
(∑

l

pljek
l

)T
Lk

(∑
m

pmiek
m

)
=
∫

Ω

(
K(r)∇

{∑
m

pmiϕ
k
m

}
,∇
{∑

l

pjlϕ
k
l

})
dΩ

Thus we have a recursive definition of our multiscale basis function

ϕk−1
j =

∑
m

pmiϕ
k
m

Grauschopf, T., M. Griebel, and H. Regler, Appl. Numer. Math., 23, pp. 63–96, 1997.
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Multilevel Basis Functions
An approximation to the influence of fine-scale structure is efficiently
generated through variational coarsening and stored in the interpolation
weights:

A tiling with a simple periodic inclusion: inclusions have K = 103,
the background has K = 1.
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Adaptive Algebraic Multigrid αAMG

Motivation:
we may not know a priori how to characterize algebraically smooth
error
assumptions made in the operator-induced interpolation of BoxMG and
AMG may be inconsistent with the actual algebraically smooth error

Components of αAMG:
first, consider the fine level.
use relaxation on the homogeneous problem to expose the local
character of algebraic smoothness
use this information to define interpolation through a local collapsing of
the operator that fits this prototypical algebraically smooth error
use galerkin coarsening to define the coarse-grid operator
apply these ideas recursively to construct a complete hierarchy of
components

M. Brezina, R. Falgout, S. MacLachlan, et al., Adaptive Algebraic Multigrid, SIAM J. Sci. Comp., 27, pp. 1261–1286, 2006.

J. David Moulton Multilevel Modeling: Multigrid’s Lost Twin

http://math.lanl.gov/~moulton/


Background
Multigrid/Multilevel Upscaling and Solvers

Multilevel Modeling
Conclusions

Two Level Methods: Linear and Nonlinear
Robust Multigrid Algorithms
Variational Coarsening and Multilevel Basis Functions

Adaptive Generation of Basis functions
An approximation to the influence of fine-scale structure is efficiently
generated through variational coarsening and stored in the interpolation
weights:

A tiling with a simple periodic inclusion: inclusions have K = 103,
the background has K = 1.

The multilevel basis function at ( 1
2 ,

1
2 ) after one αAMG cycle: ρ = 0.973.The multilevel basis function at ( 1

2 ,
1
2 ) after two αAMG cycle: ρ = 0.851.The multilevel basis function at ( 1

2 ,
1
2 ) after three αAMG cycle: ρ = 0.375.The multilevel basis function at ( 1

2 ,
1
2 ) after four αAMG cycle: ρ = 0.100.
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2 ,

1
2 ) after one αAMG cycle: ρ = 0.973.The multilevel basis function at ( 1

2 ,
1
2 ) after two αAMG cycle: ρ = 0.851.The multilevel basis function at ( 1

2 ,
1
2 ) after three αAMG cycle: ρ = 0.375.

The multilevel basis function at ( 1
2 ,

1
2 ) after four αAMG cycle: ρ = 0.100.
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Two Level Methods: Linear and Nonlinear
Robust Multigrid Algorithms
Variational Coarsening and Multilevel Basis Functions

Similarity of BoxMG and αAMG Basis Functions

Both algorithms exibit similar convergence rates and use very similar basis
functions.

BoxMG multiscale basis function. αAMG multiscale basis function.
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Multilevel Upscaling: Single Phase Flow
Multilevel Mimetic Multiscale ( M3 ): Two-Phase Flow

A Truly Multilevel Upscaling (MLUPS) Algorithm
MLUPS uses the components of robust multigrid methods to:

1 construct a complete hierarchy of coarse-scale discrete models
2 compute multiscale basis functions efficiently

(i.e., no fine-scale linear solves on coarse-scale patches)
3 provide a flexible methodology to achieve the desired accuracy

efficiently (i.e., moving towards a flexible FAS methodology).
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doi:10.1029/2005WR003940, 2006.

J. David Moulton Multilevel Modeling: Multigrid’s Lost Twin

http://math.lanl.gov/~moulton/


Background
Multigrid/Multilevel Upscaling and Solvers

Multilevel Modeling
Conclusions

Multilevel Upscaling: Single Phase Flow
Multilevel Mimetic Multiscale ( M3 ): Two-Phase Flow
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A Truly Multilevel Upscaling (MLUPS) Algorithm
MLUPS uses the components of robust multigrid methods to:
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Multilevel Upscaling: Single Phase Flow
Multilevel Mimetic Multiscale ( M3 ): Two-Phase Flow

MLUPS Basis Functions for Anisotropic Media
GSLIB recipe for generating realizations of the conductivity:

A principle axis of statistical anisotropy between 0 and 90 degrees.
log10(K(r)) is normally distributed with mean zero and variance 4
correlation lengths of 0.8 and 0.04.
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Multilevel Upscaling: Single Phase Flow
Multilevel Mimetic Multiscale ( M3 ): Two-Phase Flow

Cross-Sections of the Fine-Scale Pressure

anisotropy oriented at 30◦

pressure upscaled from a 256× 256 grid to an 8× 8 grid
note abrupt deviations in the MSFEM solution around x = 3

4 and x = 7
8
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Two-Phase Flow

The flow of two immiscible and incompressible fluids (e.g., oil and water)
that fill the pore space of a porous medium, may be described by,

∇ · u = Q(r) = qw(r) + qo(r)
u = −K(r)λ (Sw)∇p

φ
∂Sw

∂t
+∇ · (fw (Sw) u) = qw(r)

where we have used Sw + So = 1, and assumed that the porosity, φ, is
constant. We are ignoring gravity and capillary effects (i.e., po = pw = p)
and have used the following definitions:

λ(Sw) = λw(Sw) + λo(1− Sw) total mobility
fw(Sw) = λw/λ fractional flow rate
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Multilevel Upscaling: Single Phase Flow
Multilevel Mimetic Multiscale ( M3 ): Two-Phase Flow

Schematic of M3 Concept
Problem:

In an IMPES formulation, solving for pressure dominates the
computation.

Objectives:
Reduce this computational burden without significantly compromising
the influence of fine-scale heterogeneous structure.
develop a flexible multilevel process (i.e., use recursion)

K. Lipnikov, J. D. Moulton, and D. Svyatskiy, A Multilevel Multiscale Mimetic (M3) method for two-phase flows in porous media,
J. Comp. Phys., 227(14), 6727-6753, doi:10.1016/j.jcp.2008.03.029, 2008.
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Multilevel Upscaling: Single Phase Flow
Multilevel Mimetic Multiscale ( M3 ): Two-Phase Flow

Reduction of the Internal Degrees of Freedom

Yu.A.Kuznetsov,Mixed finite element method for diffusion equations on polygonal meshes with mixed cells, J.Numer.Math., 14(4),2006,pp.305-315

block transformations eliminate internal degrees of freedom
transformations involve computing the inverse of two matrices, of size
ni, and nc. This favors coarsening by a small factor (e.g., 2) recursively
over coarsening by a large factor all at once.
by design the new pressure unknown is the weighted (integral) average
of the fine-scale pressure unknowns
if reaction terms exist, average reaction rate is preserved.
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Multilevel Mimetic Multiscale ( M3 ): Two-Phase Flow

Conservative Flux Coarsening

u1

u2

U L

l2

l1

1 local mass conservation on all
levels

UL(|`1|+ |`2|) = u1|`1|+ u2|`2|.
2 preserve the form of the

discretization on all levels

To interpolate coarse-scale fluxes, we let α be the ratio of fine-grid fluxes:

α =


u1
u2
, u2 6= 0,

1, otherwise.
⇒

[
u1
u2

]
= QLUL.
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Multilevel Upscaling: Single Phase Flow
Multilevel Mimetic Multiscale ( M3 ): Two-Phase Flow

Approximating α

Objectives:
must be less expensive than solving the fine-scale problem
accuracy should correlate with computational cost
incorporate global information as needed

Proposed Algorithms:
develop local approximations based on local medium properties
solve local problems (e.g., Arnes version of MsMFEM)
leverage robustness and efficiency of variational coarsening in AMG

setup fine-scale Lagrange multiplier system
solve using PCG preconditioned with AMG V(1,1) cycles to weak
tolerance in L2 norm of relative residual.
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Multilevel Upscaling: Single Phase Flow
Multilevel Mimetic Multiscale ( M3 ): Two-Phase Flow

Two-Phase Flow Specifications

We define the the relative permeability curves as,

krw(S) = (S∗)2 kro(S) = (1− S∗)2 S∗ =
S− Swc

1− Swc − Sor
,

where Swc is the critical saturation, and Sor is the residual saturation.

Swc = Sor = 0.1.
initial saturation, S(t = 0) = Swc = 0.1
phase viscosities, µw = 1 and µo = 4
porosity of the medium, φ = 0.2
no-flow boundary conditions
flow is driven by source/sink terms
time is measured in Pore Volume Injected (PVI).
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Multilevel Upscaling: Single Phase Flow
Multilevel Mimetic Multiscale ( M3 ): Two-Phase Flow

Quantities of Interest

breakthrough time of water at the production wells
saturation of water at the production wells
water cut,

qw

qw + qo

relative error in saturation

δS(t) =
|Sr(t)− S(t)|

Sr(t)

where Sr(t) denotes the reference saturation, which is computed using
standard IMPES approach on a twice refined grid.
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Multilevel Mimetic Multiscale ( M3 ): Two-Phase Flow

SPE 10 Layer 68

A

B D

C

E

F H

G

The left image shows the permeability field of layer 68 SPE 10th

Compartive Solution Project.
The schematic on the right shows the locations of the injector well (×)
and producer wells A, B, C, and D (◦).
Details of the flow at the macro-edges (•) located at points, E, F, G, and
H are monitored.
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Breakthrough curves (watercut)
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Coarsest mesh: 28x8
Coarsest mesh: 14x4
Coarsest mesh: 7x2

Water-cut curves for total coarsening factors 8, 16, and 32 at producer B.
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Relative Error in Saturation
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Fine-scale solution
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Coarsest mesh: 7x2 - no updates

Coarsest mesh: 7x2 - 10 updates

Coarsest mesh: 7x2 - 20 updates

Coarsest mesh: 7x2 - 50 updates

Coarsest mesh: 7x2 - 100 updates

Fine-scale solution

Relative error in saturation at producer A for no updates and different coarsenings
(left) and with different number of updates with the coarsest-mesh 2× 7 macro-cells.
The convergence tolerance is ε = 0.01.
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Time Evolution of α
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The comparison of the flux ratios obtained with different update strategies at points
G and H.
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Viewgraph Norm

Water saturation at t = 0.3 PVI.

Permeabilty Field Fine mesh 220× 60 Coarse mesh 7× 2
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Conclusions

1 Robust Multigrid Solvers
FAS provides a flexible framework for multiscale simulation.
potential for error estimation and control
αAMG and αSA based AMG have promise for treating systems of
multiphysics PDEs.

2 Multilevel Upscaling
basis functions are similar to MsFEM, but construction in MLUPS is ≈ 15
times faster and generates a complete hierarchy.
Homogenized/upscaled/effective coefficients and models may be
recovered at coarser scales.

3 Multilevel Multiscale Mimetic M3

leverages a robust variational multigrid (AMG) to estimate flux ratio
local mass conservation on all levels
offers great flexibility in balancing accuracy and efficiency
with large coarsening factors speedup is approximately 80 times in
pressure solve, and approximately 8 times overall.
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