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Forward and inverse problems



d = g(m)

d(s) =
∫ b

a
g(s, x)m(x)dx

GT G 3

Irritating properties of inverse problems

Nonlinear

Ill-posed

Non-unique

d = Gm

m = (GT G)−1GT d

Small changes in data lead to large changes in a solution

Fredholm integral equations
Deconvolution

Fourier transform inversion

has zero eigenvalues

GT G has large condition number



α

δ

Tikhonov 
solution

Extremal
solution

|| d - Gm ||

|| m ||

ε

d = Gm m = (GT G)−1GT d

min ||Gm− d||22 + α2||m||22
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Non-uniqueness in Linear(ized) problems

A Tikhonov solution

A Parametrization solution

Coarsen

Global reduction in resolution  -> reduces information retrieval

Global reduction in resolution. Formal errors are biased !

m = (GT G + α2)−1GT d
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Looking for a single ‘best’ solution is not the 
only game in town

Replace optimization framework with a randomized 
sampling based approach

Single ‘best’ solutions are replaced by properties of 
many partial solutions

Global (crude) regularization term replaced with data 
adaptive smoothing

Obtain statistical measures of model error

Take home messages



φ(m) = ||Gm− d||22 + α2||m||22 p(m|d) = k × p(d|m) p(m)
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An ensemble approach to inversion

Bayesian sampling frameworkOptimization framework

Maximum

Probabilistic framework -> inference described by probabilities 

Seek many potential solutions rather than just one

Look at properties of solutions

Computation high, but not infeasible.

A 
nonlinear
problem

Data fit or Log Likelihood function
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Adaptive parametrizations in seismic 
tomography

Chou & Booker (1979); Tarantola & Nercessian (1984); Abers & Rocker (1991); Fukao et al. (1992); Zelt & Smith (1992); Michelini 
(1995); Vesnaver (1996); Curtis & Snieder (1997); Widiyantoro & van der Hilst (1998); Bijwaard et al. (1998); Bohm et al. (2000); 
Sambridge & Faletic (2003).

Nolet & Montelli (2005)

Sambridge & Rawlinson (2005)Gudmundsson & Sambridge (1998)
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Partition Modelling

A Bayesian MCMC based technique used for classification 
and Regression problems in Medical Statistics 

What is the underlying function ?

How many unknowns ?
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Partition Modelling

Dynamically fit the height and the position of discontinuity

Randomized sampling
of partition models within a 
Bayesian Framework

n=6 n=11

n=8 n=3

Mean solution

True solution

Can we apply these concepts to tomography ? 

Data driven smoothing !

No explicit regularization

Self adaptive
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A simple tomographic test problem

Km/s



 

Iterative linearized inversion
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Solution 
Model

Reference 
Model

Ray 
Geometry

Observed
Travel times

 Forward calculation
 Fast Marching Method

Inversion step
 Subspace method (matrix inversion)

 Fixed regular grid pramaterization

 Explicit regularization penalty

 Quadratic interpolation (smoothing)



min ||Gm− d||22 + α2||Lm||22
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Tikhonov solutions
Damping

Smoothing

m = (GT G + α2)−1GT d

Standard 
Fixed grid 

tomography
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Partition modelling applied 
to linearized tomography
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Ensemble
of

Models

Reference 
Model

Ray 
Geometry

Observed
Travel times

 Forward calculation
 Fast Marching Method

Inversion step
 Markov chain Monte Carlo

 Metropolis-Hastings sampler

 No regularization

 Reversible-Jump MCMC

Point wise 
spatial 

average



2-D partitions = Voronoi cells

Km/s
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Voronoi cells for unstructured meshes

From Okabe et al. (1995)

Tomography parameterization

Each cell contains a slowness parameter

Cell nuclei can move position
(grow and shrink)

Cell nuclei can be added (birth) 
or removed (death)
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Voronoi cells are everywhere



Km/s
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Outline of general procedure

With equal probability propose   
    a new model using either:

cell birth,       
cell death,       
cell move,       
perturb slowness in randomly 

    chosen cell

Compute travel times

 Accept new model with probability, p:

Go to start

p = 1/2

p = min
{

1,
p(d|x′) p(x′) q(x|x′)
p(d|x) p(x) q(x′|x)

|J |
}

p = 1/2}
x→ x′

Will converge to sample from the
Bayesian posterior Probability 
density function (PDF)



Move location of cell nucleus according to a chosen PDF
e.g. A Gaussian with chosen width

q(x′|x) ∝ exp{−1
2
(x− x′)T C−1

M (x− x′)}

x′
i = xi + σi ×N(0, 1), (i = 1, 2)
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Moving Voronoi cells 



x′
i = xi,0 + ∆xi × U(0, 1), (i = 1, 2) 18

Changing the number of Voronoi cells 

The birth step

Generate location of cell nucleus according to a chosen PDF, 
e.g. the uniform prior

q(x′|x) ∝ 1
∆x1∆x2



A convergent Markov chain 
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Step 150 Step 300 Step 1000



Fixed grid + Regularization 
vs Partition Modelling results
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Details:
45 mobile cells
No birth,
No death
Linearized case

Best data 
fit model

400 cells + regularization

Information is contained 
in properties common to
models in the ensemble 



Fixed grid + Regularization 
vs Partition Modelling results
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Details:
45 mobile cells
No birth,
No death
Linearized case

Best data 
fit model

400 cells + regularization

Mean 
model



Model uncertainty
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Ensemble average Ensemble standard deviation

±1σ

True model
Avg. model

True absolute error
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Including birth, death and noise
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2 % data noise 10 % data noise

Spatially averaged models from ensemble

Histograms of number of cells from MCMC
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Application to ambient noise tomography is 
Australia
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Saygin (2007)

Cross correlation of 
Ambient seismic noise
for Rayleigh wave 
group velocity at 5s

Average velocity field 
of ensemble

 Standard deviation of ensemble

Partition modelling tomography
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Summing up

Inversion and Optimization are not the same thing

Analysis of many candidate solutions can be 
      better for interpretation than seeking single 
      optimal (regularized) models. 

Computation not prohibitive (can employ same 
       linearized approximations used in iterative schemes)



25

The End

But if you want more...




