
Fast algorithms for inverse problems governed by PDEs

George Biros

$$\min_{u} \mathcal{J}(u) := \frac{1}{2} \|Ku - d\|^2 + \frac{\beta}{2} \|u\|^2$$

Collaborators and Support

 Santi S. Adavani (Penn), Volkan Akcelik (Stanford), Omar Ghattas (UT Austin)

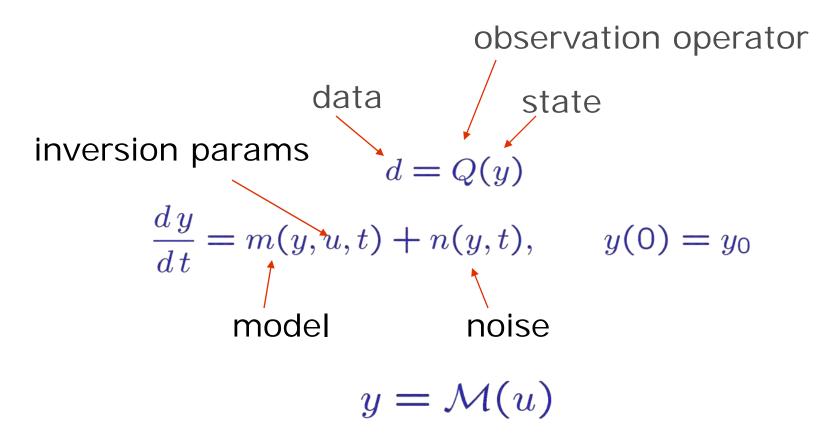
- National Science Foundation
- National Institutes of Health
- Air Force Office of Scientific Research
- Department of Energy

Outline

- Inverse problems with PDEs
- The input-output map
- Ill-posedness and regularization
- Algorithmic goals
- The Hessian
 - o Structure (equilibrium, evolution)
 - o Preconditioning and regularization

Key points of the talk

- Hessian
 - o Regularization
 - o Acceleration
 - o Probability
 - o "Hard" to compute



Inverse problems in earth sciences

- Weather/Climate/Cloud
- Space
- Ocean/Ice
- Carbon
- Ecosystems
- Subsurface imaging o Gravity, electromagnetics, porous media, seismic
- References for inverse problems theory o Tarantola, Kaipio & Somersalo, Vogel

General problem statement

Model encapsulates conservation and constitutive laws

Linear case: input-output operator and the Hessian

- Forward operator $y = \mathcal{M}u$
- Observation operator
- Input-output operator
- Hessian

d = Ku

d = Qy

$$H = K^*K$$

• Adjoint

 $K^* = M^* Q^*$

Inverse problem, Linear case

Inverse problem

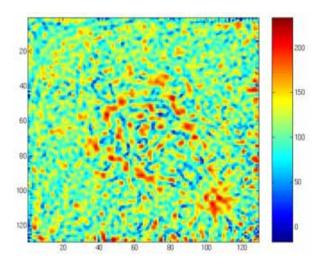
$$\min_{u} S(Ku, d) + \mathcal{R}(u)$$
$$\min_{u} \frac{1}{2} ||Ku - d||_{2}^{2} + \frac{1}{2} ||u||_{R}^{2}$$

• Least squares o Linear system for *u*

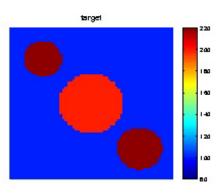
 $(R + K^*K)u = K^*d$

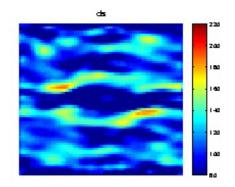
- How do you choose *R*?
- Scalable algorithms
 - o Relation to probabilistic/Bayesian approaches Maximum likelihood

Inverse scattering

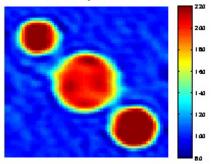

- Forward problem Given tissue material and excitation parameters, compute acoustic response
- Inverse problem
 Given observations (and source), estimate material parameters
 - o Constrain w/deviation with prior models
 - o Penalize w/total variation

$$\begin{split} \min_{u,y} \frac{1}{2} \sum_{j=1}^{N} \int_{0}^{T} (d_{j} - y(x_{j}))^{2} dt + \frac{\beta}{2} \int_{\Omega} |\nabla u|^{2} d\Omega \\ \text{subject to } \frac{\partial^{2} y}{\partial t^{2}} - \nabla \cdot u \nabla y = f \text{ in } \Omega \times [0,T] + B.C., \ I.C. \end{split}$$

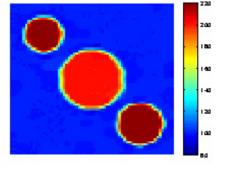



2D acoustics Akcelik et al 02

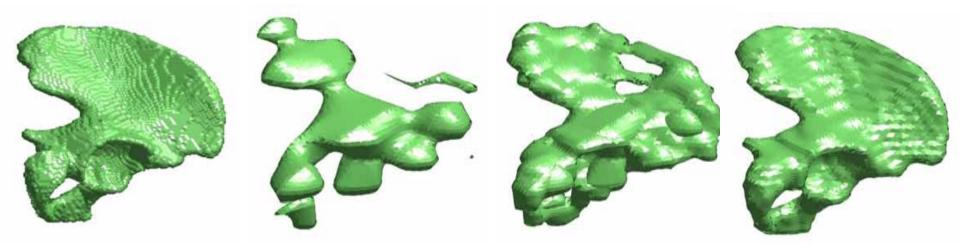
No regularization



Tikhonov and total variation



Tikhonov regularization



total variation

3D acoustics 256 cores at PSC Akcelik et al 02

grid size	material parameters	L-BFGS its	GNK its	PGNK its
65^{3}	8	16	17 (5)	10 (5)
65^3	27	36	57 (6)	20 (6)
65^{3}	125	144	131 (7)	33 (6)
65^3	729	156	128 (5)	85 (4)
65^{3}	4913	*	144 (4)	161 (4)
65^{3}	35,937	*	177 (4)	159 (6)
65^{3}	274,625		350 (7)	197 (6)
129^{3}	2, 146, 689		1470† (22)	409 (16)

Structure of the Hessian, parabolic PDE

minimize
$$\frac{1}{2} \int_{0}^{T} \int_{\Omega} (y-d)^{2} d\Omega dt + \frac{\beta}{2} \int_{\Omega} u^{2} d\Omega$$
subject to
$$\frac{\partial y}{\partial t} - \nu \Delta y + a(x)y + u(x)\mathbf{1}(t) = 0$$
$$y(x,0) = 0, \ x \in \Omega, \quad y(0,t) = y(\mathbf{1},t) = 0.$$

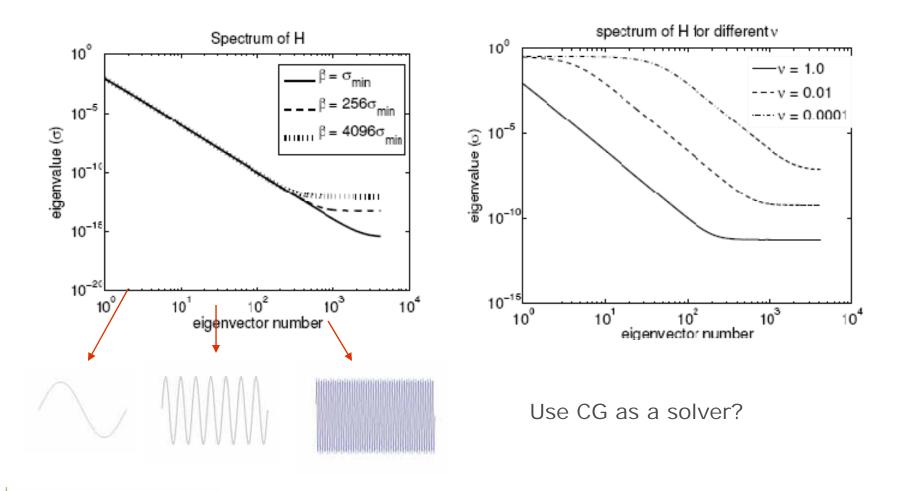
Computing g = Hu

Forward

$$\frac{\partial y}{\partial t} - \nu \Delta y + u(x)\mathbf{1}(t) = 0$$

$$y(x,0) = 0, \ x \in \Omega, \quad y(0,t) = y(1,t) = 0$$
Adjoint
$$-\frac{\partial p}{\partial t} - \nu \Delta p + y = 0$$

$$p(x,T) = 0, \ x \in \Omega, \quad p(0,t) = p(1,t) = 0$$
Gradient
$$g = \beta u + \int_0^T p \, dt$$



Spectral analysis of the Hessian

- Green's function $G(x,y;t) := \sum_{k=1}^{\infty} e^{-\lambda_k t} 2\sin(k\pi x)\sin(k\pi y)$
- Laplacian $\lambda_k = \nu k^2 \pi^2$
- Reduced Hessian operator $Hu := \beta u(x) + \int_T \int_\Omega \int_T \int_\Omega 1(t) G(x, y; T - t - \tau) G(y, z; \tau - \sigma) 1(\sigma) u(z) d\Omega d\sigma d\Omega d\tau dt$
- Reduced Hessian $h_k = \beta + \frac{3 + e^{-2\lambda_k T} - 4e^{-\lambda_k T} + 2\lambda_k T}{2\lambda_k^3} = \beta + \mathcal{O}(\frac{1}{\lambda_k^2})$

Spectrum

Georgia Institute of Technology

CG for Hessian

N_s	$eta \ (\sigma > eta)$			iters	
512	6e-08 (19)	1e-10 (99)	69	725	
1024	6e-08 (19)	1e-10 (99)	70	781	
2048	6e-08 (19)	1e-10 (99)	68	763	
4096	6e-08 (19)	1e-10 (99)	71	713	

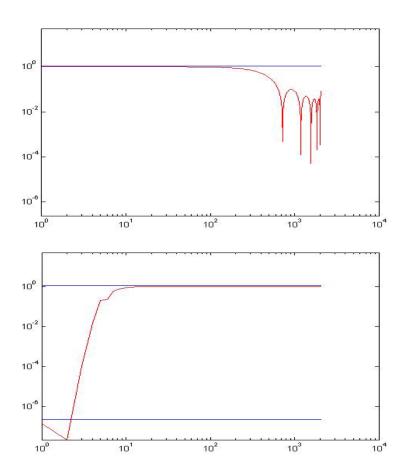
- Fixed β : CG mesh-independent
- Fixed mesh : CG β -dependent
- β depends on frequency information that we need to recover
 o Truncation noise → β ≥ h²

Difficulties

- For constant coefficients we can construct analytic representation of Hessian
 - o Algebraic ill-posedeness
 - o For partial-observations we have singular Hessian
- Matrix-free iterations
- 1 forward + 1 adjoint per Hessian matvec
- Hessian ill-conditioned
- Precondition
 - multigrid
 - analytic Hessian

Multigrid

- Multigrid elliptic PDEs o *Brandt, Braess, Bramble, Hackbusch*
- Multigrid second kind Fredholm
 o *Hackbusch, Hemker & Schippers*
- Multigrid for optimization/inverse problems
 - o Ascher & Haber & Oldenburg, Borzi, Borzi & Kunisch, Borzi & Griesse, Chavent, Dreyer & Maar & Schultz, Draganescu, Hanke & Vogel, Lewis & Nash, Kaltenbacher, King, Kunoth, Ta'asan, Tau & Xu, Vogel, Toint



Multigrid for Hessians: challenges

- Typically "dense"
- Typically only "MatVec" available
 - o Differential
 - o I + Compact
 - o Compact
 - Smoothers
 - Hessian approximation
 - Coarse grid operator (Galerkin vs Non-Galerkin)

CG as a smoother

• Laplacian

Hessian

Smoother for MG

 $u = u_{s} + u_{o} \text{ where } u_{s} \in V_{2h}, u_{o} \in W_{2h}$ P_{h} V_{h} V_{h} $I - P_{h}$

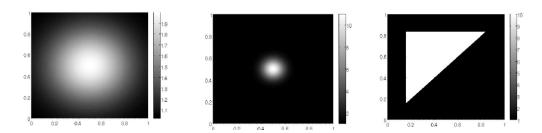
$$(I - P_h + P_h)H^h(I - P_h + P_h)(u) = g$$

Smoothing equation

$$(I - P_h)H^h u_o = (I - P_h)g$$

Coarse-grid equation

$$P_h H^h u_s = P_h g$$

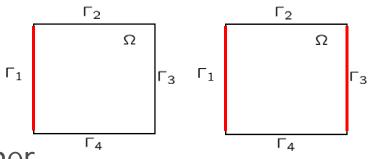

GeorgiaInstitute of Technology

Results Adavani & Biros SISC 08

$\nu = 1.$	0				
N_s	β	${ m M}_{ m sec}^{-1}$	$ ilde{\mathrm{M}}_{\mathrm{sec}}^{-1}$	${ m M}_{ m stc}^{-1}$	$ ilde{ m M}_{ m stc}^{-1}$
31	5e-07 (31)	10	10	10	10
63	1e-07 (44)	13	13	13	17
127	3e-08 (63)	13	14	14	16
255	7e-09 (89)	13	19	13	16
511	2e-09 (127)	15	18	15	17
1023	5e-10 (180)	15	17	15	17

- CG precondioned by multigrid
- V(2,2) cycles
 - o mesh β -independent
 - o Time coarsening (sec vs stc)

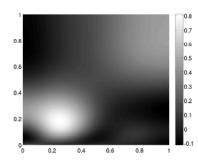
2D, full domain observations

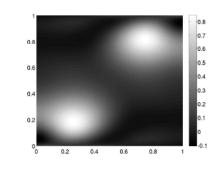


	α_1		α_2		α_3	
n imes n	none preco		none	preco	none	preco
17×17	8	3	8	3	11	6
33×33	15	3	14	4	21	7
65×65	36	4	35	4	80	8
129×129	169	4	136	5	248	12
257×257	639	5	647	6	-	13

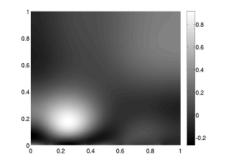
Hessian for boundary observations

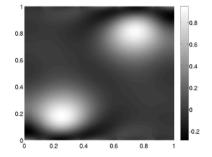
- Construct Hessian analytically for const coefficients
- Construct inverse



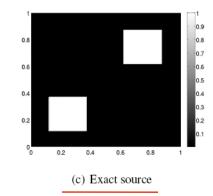

- Not an exact preconditioner
- Use to precondition variable-coefficient case

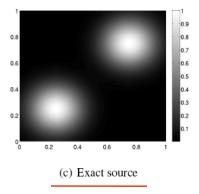
$$H^{p}(i,j) = \frac{T - E_{ip0}(T) - E_{jp0}(T) + E_{ijp}(T)}{\nu^{2}(i^{2} + p^{2})(j^{2} + p^{2})\pi^{4}}$$
$$E_{lmr}(t) = \frac{1 - \exp(-(l^{2} + m^{2} + 2r^{2})\nu\pi^{2}t)}{\nu(l^{2} + m^{2} + 2r^{2})\pi^{2}}$$


Reconstructions



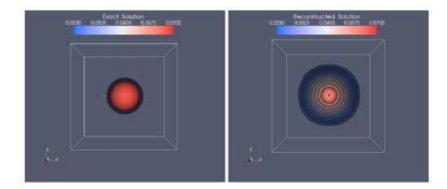
(a) Measurements on the left boundary


(b) Measurements on the left and right boundaries



(a) Measurements on the left boundary

(b) Measurements on the left and righ boundaries



Scalability

Left boundary data									
	u_1				u_2				
	$\beta = 10$	$0^{-4}/n^2$	$\beta = 1$	$0^{-5}/n^2$	$\beta = 10$	$0^{-4}/n^2$	$\beta = 10^{-5}/n^2$		
$n \times n$	none	preco	none	preco	none	preco	none	preco	
17×17	3	3	4	5	5	4	7	6	
33×33	3	3	21	5	7	4	33	5	
65 imes 65	26	3	-	5	18	4	-	6	
129×129	-	4	-	5	-	4	-	6	
257×257	-	4	-	5	-	4	-	6	
	Left and Right boundary data								
		u	1			u	2		
	$\beta = 10$	$0^{-4}/n^2$	$\beta = 1$	$0^{-5}/n^2$	$\beta = 10^{-4}/n^2$ $\beta = 10^{-5}/n^2$				
$n \times n$	none	preco	none	preco	none	preco	none	preco	
17×17	3	3	3	4	5	3	11	4	
33×33	3	3	12	4	8	3	10	5	
65 imes 65	-	3	77	4	11	3	191	5	
129×129	-	3	-	4	-	4	-	4	
257×257	-	3	-	5	-	4	-	5	



3D parabolic Adavani & Biros' 08

$n \times n \times n$	none	preco
$16 \times 16 \times 16$	51	10
$32 \times 32 \times 32$	82	10
$64 \times 64 \times 64$	102	11
$128 \times 128 \times 128$	165	10

Forward: 256^3 x 1024

Summary

- Hessian: Important when we have a lot of data and high-dimensional *u*
 - o Operator, parametrization, observations
- Second derivatives (need for adjoints)
- Regularization
- Case-by-case analysis needed
 - o Multigrid
 - o Analytic preconditioners
 - Limited on regular geometries, smooth coefficients
 - o Orders of magnitude improvement

Not discussed

- Adaptive mesh refinement
- Bayes and probabilistic approaches
- Nonlinear inversion

 Nonlinear regularization
- Data assimilation
- Parallel scalability
- Model error

