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Outline

• Inverse problems with PDEs
• The input-output map
• Ill-posedness and regularization
• Algorithmic goals
• The Hessian

o Structure (equilibrium,evolution)
o Preconditioning and regularization



Key points of the talk

• Hessian
o Regularization
o Acceleration 
o Probability
o “Hard” to compute



Inverse problems in earth sciences

• Weather/Climate/Cloud
• Space
• Ocean/Ice
• Carbon
• Ecosystems
• Subsurface imaging 

o Gravity, electromagnetics, porous media, seismic

• References for inverse problems theory
o Tarantola, Kaipio & Somersalo, Vogel



General problem statement

• Model encapsulates conservation and constitutive laws

model noise

data state

observation operator

inversion params



Linear case: input-output operator  and the Hessian

• Forward operator

• Observation operator

• Input-output operator

• Hessian

• Adjoint



Inverse problem, Linear case

• Inverse problem     

• Least squares
o Linear system for u

• How do you choose R?
• Scalable algorithms

o Relation to probabilistic/Bayesian approaches
Maximum likelihood



Inverse scattering

• Forward problem
Given tissue material and 
excitation parameters, 
compute acoustic response 

• Inverse problem
Given observations (and 
source), estimate material 
parameters
o Constrain w/deviation with prior 

models
o Penalize w/total variation



2D acoustics  Akcelik et al 02

Tikhonov and total variation 
regularization

No regularization



3D acoustics 
256 cores at PSC
Akcelik et al 02



Structure of the Hessian, parabolic PDE



Computing  g = Hu



Spectral analysis of the Hessian



Spectrum

Use CG as a solver?



CG for Hessian

• Fixed β : CG   mesh-independent
• Fixed mesh : CG   β-dependent
• β depends on frequency information that we need to recover

o Truncation noise → β ≥ h2



Difficulties

• For constant coefficients we can construct analytic 
representation of Hessian
o Algebraic ill-posedeness
o For partial-observations we have singular Hessian

• Matrix-free iterations
• 1 forward + 1 adjoint per Hessian matvec
• Hessian ill-conditioned
• Precondition 

• multigrid
• analytic Hessian



Multigrid

• Multigrid - elliptic PDEs 
o Brandt, Braess, Bramble, Hackbusch

• Multigrid – second kind Fredholm
o Hackbusch, Hemker & Schippers

• Multigrid for optimization/inverse problems 
o Ascher & Haber & Oldenburg, Borzi, Borzi & Kunisch, Borzi & Griesse, 

Chavent, Dreyer & Maar & Schultz,   Draganescu, Hanke & Vogel, 
Lewis & Nash, Kaltenbacher, King, Kunoth, Ta’asan, Tau & Xu, Vogel, 
Toint



Multigrid for Hessians: challenges

• Typically “dense” 
• Typically only “MatVec” available

o Differential
o I + Compact
o Compact

Smoothers
Hessian approximation
Coarse grid operator (Galerkin vs Non-Galerkin)



CG as a smoother

• Laplacian

• Hessian



Smoother for MG

•



Results Adavani & Biros SISC 08

• CG precondioned by multigrid
• V(2,2) cycles

o mesh β-independent
o Time coarsening (sec vs stc)



2D, full domain observations



Hessian for boundary observations

• Construct Hessian analytically for const coefficients
• Construct inverse

• Not an exact preconditioner
• Use to precondition variable-coefficient case



Reconstructions



Scalability 



3D parabolic   Adavani & Biros’ 08

Forward: 256^3 x 1024




Summary 

• Hessian: Important when we have a lot of data and 
high-dimensional u
o Operator, parametrization, observations

• Second derivatives (need for adjoints)
• Regularization
• Case-by-case analysis needed 

o Multigrid
o Analytic preconditioners

Limited on regular geometries, smooth coefficients

o Orders of magnitude improvement



Not discussed

• Adaptive mesh refinement
• Bayes and probabilistic approaches
• Nonlinear inversion 

o Nonlinear regularization

• Data assimilation
• Parallel scalability
• Model error
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