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Simulation Procedure in General

(Anelastic fluid and Boussinesq approximations are assumed)

do time-marching loop
solve energy equation (update temperature 7

% = ¥/ i (_/{VTI) + q

solve for flow field (update velocity » and pressure p)
0 = V-.v

1 Dv '
N = —Vp+V. [I—)I(V DU +VE V)] + RaTe,

() O ——
Pr Di 2

end do time-marching loop




Difficulty in Simulations

Solution for flow field is very time-consuming

_ 1 Dv 0] B
D Yyee—oe— = —Vp+ V' |=(VRV+1VX + Ra'l'e.
Pr Dt Vp+V [2 (Vv +v& v)] RaTe,
0 = V-v
Causes of difficulty

3 incompressible (or anelastic) fluid
= no equation for directly solving pressure field
3 extremely high viscosity (; ~ 102 Pas)
= |nertia term becomes negligibly small (pr ~ 10%)
= steady-state flow must be solved at every timestep

3 strong spatial variation in viscosity (in vertical/norizontal direction)
= gpectral method is not suitable
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Aim of This Study

To develop an efficient algorithm
 (from viewpoint of mantle convection simulations)

( steady-state flow of

for solving ¢ incompressible fluid with
| strong spatial variation in viscosity

in large-scale 3-D domain

0 = —-Vp+V. [7—)7 (Vov+rv® V)] + RaTe,
0 = V.v

—

4 (from computational viewpoint)

[ aset of elliptic equations

for solving < with strongly varying coefficients and
| large number of unknowns

= making good use of multigrid technique
= with sufficient vector/parallel efficiency




Proposed Algorithm (1)

For steady-state flow of highly viscous incompressible fluid

0 = -Vp+V. [g (Vov+rv® \7)] + RaTe,

0 = V-.wv (for given temperature 1" and viscosity 77)

Ingredient 1: Pseudo-Compressibility Method

O integrates pseudo-evolutionary equations for v and p to
steady-state

1 describes pseudo-evolution of pressure p using artificial com-
pressibility

ov 7
M"‘)_— = —Vp+V: B (Vav+v@ V)] + RaTe,
_}_),-_, where 7 : pseudo-time
—K— = Vv _ .
or M pseudo-density

K . pseudo-compressibility
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Pseudo-Compressibility Method ?

d The good

= always converges to incompressible flow field (owing to
viscous damping)

57 (V) =Y (VO g5 (V (Vo4
N — —
"pseudo-sound” viscous damping

= deals with primitive variables (velocity v and pressure p)
— applicable both to 2-D and 3-D problems

= simple and easy
- only integrates (pseudo-)evolutionary equations

- The bad

= converges very slowly
- very slow reduction in long-wavelength error (because of

diffusion equation)

= must be used with multigrid method



Proposed Algorithm (2)

What happens in case with spatial variation in viscosity » ?

M— = -Vp+V. [[7/ (Vov+v® V)] + RaTe,

—

—[\'.— — V'U

“local convergence rate” for velocities v ~x 7
— yields slow convergence where 5 is small

Ingredient 2: Local Time-Stepping Method
3 varies “effective” time-steppings A7/M and A7 /K In
space
= simply achieved by varying “artificial” density A/ and
compressibility A" in space
= neither M nor K needs to be “realistic” values



Proposed Algorithm (3)

Appropriate form of spatial variations in M and K ?

v 7
Mo = —Vp+ V- [—)] (Vav+v® V)] + RaTe,
O
— \',—[ = V-.v
or

Hint. Pseudo-temporal evolution of flow field is characterized by,

0? | 1 o9, ]
Or2 ( ) KM V-v) + M Ot V2 )] +
"pseudo-sound” propagation viscous damping

To remove influences of variation in 1,

O minimize spatial variations in Choose
rate of effective viscous “damping” 7/ M M x 7
rate of “pseudo-sound” propagation 1 /v/ X' M K o n™
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Benchmark Test
with Busse et al. (1993)

Case 1a Case 2
constant viscosity temperature-dependent viscosity
Ra = 30000 Ra=20000, viscosity contrast=20
1.0079x0.6283 <1 box 1x1x1 box
r— | l. T= <
, |I 5 el e
oy | o YN
| || AT
| ¢ i
i
| N
I |
Ses S :
: 7=0.7 > '- 7=0.7
32x16x32 | 64 x32x64 | best estimates 32x32x32 | 64 x64 x64 | best estimates

Nu 3.6019 3.5549 [ 3.5374+0.0005| Nu 3.0503 3.0419 | 3.0393+0.0050

Vims | 41.382 41.104 40.999+0.004 | Vims 35.161 35.130 35.13+0.05




Comparison with Ogawa et al. (1991)

for strongly temperature-dependent viscosity
Case 1 (R, =10°r=1)

1.7x0.5x1 box =
64 x32x64 mesh = "'”h”|

, - |
1= exp[E(T; = T) o
_ pgo(T—T.)d {1 ARRRAAR (AR
B = e 4 {I’i“ % :
e exp[E(Tb — :Tt)] = %:—la: |‘ : '. L Tzii?
Case 4 (R, = 10°,r = 10%) Case 16 (R, =10°,r =3.2 x 10°)  Case 18 (R, = 32,r = 10%)
o ff: : . i > —\:‘ f .;L--"-"'
o | v Hi
"M l[; T i |:|I
1|1|:l|| 3 R '||:|;_ S
H[““l ll“ ” = T=0.7 | | ; = 10,02 AR ! \_.:‘- T=0.92

computational time: 3 sec/step for Case 1 (with no viscosity contrast)
18 sec/step for Case 18 (with 10° viscosity contrast)
with Pentium |V 2.20GHz (NB: started from different initial conditions)

-p.10



Convergence Tests (0)

Pseudo-temporal integration is used as a smoother of multigrid method

Example: 3-D thermal convection in a cube with 64 x64 x64
mesh divisions and strongly temperature-dependent viscosity

Multigrid V-cycle Number of pre/post-smoothing
(Correction Storage Scheme)
Type 0 Type 1 Type 2

LOVEEE o i i i - - 8 8 8 X [In(vnmax/nmin)-*' 1]
(64X64X64)

level _— o 0 B e e e e e - - - 8 16 16 X ['n(nmax/nn1.‘n)+ 1]
(32x32x32)

Leveld _ _ o e e o el s 8 32 32 X [ln(nn7ax/nn1in)+1]
(16x16x16) restrict prolongate

Level 3 _ _residuals_ SR (NP, - (L}, ¢~ 8 64 64 X [In(nn7ax/nm.'n)+ 1]

(8x8x8)

level2 _ oo e e e e e e e - o 8 128 128 x [ln(]]max/]].nrfn)+ 1]

(4x4x4)

LeVel 1 e e Moo - 8 256 256 X [IN(MmaxMmin)+1]

(2x2x2)

3 Types of pre/post-smoothing iterations are tested
— to find robust implementation for strong viscosity variation
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Convergence Tests (2)

For the case with larger local temperature variations
Temperature-dependent viscosity 1 o exp [—=1" In (7)max/7min )]

Temperature field Computational Cost

O Convergent up to 7max/7min = 10°

3 Larger local temperature variation — Larger local viscosity
variation = More “lll-conditioned”

1 Better choice of initial condition can lead to convergence



Multigrid Optimization

3 “agglomeration™: Key to massive parallelization of multigrid
calculations

= activate all PEs in calculations on fine grid levels
= activate 1 PE only in calculations on coarse grid levels
to reduce communication overheads

multigrid V-cycle domain decomposition
for 1024x1024x256 mesh problem by 2x32x8=512
S s s s s s S 512x32x32/PE
(1024x1024x256)
level 7 _ _ % - - - —. 256x16x16/PE
(512x512x128)
| R . SR SR | SS— 128x8x8/PE
(256x256x64)
o L. T yp—— 64x4x4/PE decomposable
(128x128x32)  restriction prolongation => activate all PEs
level4 _ofresidualsy __ _____ _Jf _ of emors.  32x2x2/PE
(64x64x16)
Vel oo e M I v S 32x32x8/PE
(32x32x8) gather scatter not decomposable
level2 ___torankQ_3% __g_fromrapk O_. 16x16x4/PE => activate one PE only
(16x16x4)
ol s cs s el s s @i 8x8x2/PE

(8x8x2)



Performance on the Earth Simulator

1024 « 1024 < 256 mesh division, Multigrid 8 levels, 64PN(=512PE)
Ra = 107, constant viscosity, 1000 timesteps

MPI Program Information:

Note: It is measured from MPI Init till MPI Finalize.

[U,R] specifies the Universe and the Proceas Rank in the Universe.

Glcbal Data of 512 processes:

Real Time (sec)

User Time (sec)

System Time (sec)

Vector Time (sec)
Instruction Count

Vector Instruction Count
Vector Element Count
FLOP Count

MOPS

MFLOPS

Average Vector Length
Vector Operation Ratio (%)
Memory aize used (MB)

overall Data:

Time (sec)

gystem Time (sec)

Vactor Time (sec)

GOPS (rel. to User Time)
GFLOPS (rel. to User Time)
Memory s2ize used (GB)

Min [U,R]

2167.564 [0,79]

2148.951 [0,398]
3.240 [0,231]

1886.794 [0,70]

: 1725861809825 [0,56]

: 8972700070279 [0,295] 11284593905563 [0,0]

45725028280 [0,1]

: 3141552699120 [0,1]

4219.400 [0,231]

1454.453 [0,1]
188.435 [0,0]

98.584 [0,124]

979.454 [0,1]

2168.180

Max [U,R]

2168.180 [0,184]

2161.454 [0,219]
7.921 [0,280]

1999.746 [0,0]

204325670446 [0,0]

59885749447 [0,0]

4245768380296 [0,0]
5290.575 [0,0]
1965.3%4 [0,0]

199.675 [0,1]
98.736 [0,0]
1043.454 [0,2]

uodi6e.211 9 9 gac/step

2022.255
976541.389

Average

2168.026
2156 .579
3.950
1907 .307
175903786565
456845002132
9115733866864
3222272951859
4286.788
1494 .161
194.601
98.604
1011.461

2101 825 18.68% of peak performance

765.010

sos.720 99.91% parallelization efficiency

fastest “made-in-Japan” code
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Impact of “Agglomeration”
Results from 1024><1024 ><256 meshes, 8 multigrid levels

& 1074 theoretical theoretical

w relations relations

g

L

°

£ 107

&

@

=

| —

= - parallel execution level

§ 10 (512 PEs active)

3 :
single
execution level

" (only 1 PE active)

10- | I | I I I I I

8 7 6 5 4 3 4 1
fing «——— qrid level ——— = coarse

plots of execution times of one smooth-

ing calculation against grid levels

grid level 1

' 0.000 sec

grid level 2
£8.18 sec

grid level 2
3812 s=c

execution time for

smoothing steps
over 1000 timesteps
1923.8 sec

grid level 8
8352 s=c

grid level 4
172.8 sec

grid level 7
251 8 sec

ratios of execution times of total smooth-
ing calculations for all grid levels

0 "agglomeration” considerably improves the efficiency of
coarse-grid calculations (by removal of communication overheads)
— no serious loss of overall efficiency
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Yin-Yang Grid
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Two “Pole Problems” of
the Latitude-Longitude (lat-lon) Grid

1. Coordinate singularity on the poles
- special care should be taken

2. Grid convergence near the poles
- nieeds a spherical filter for CFL
- waste of CPU time




the Lat-Lon Gnd
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Baseball

A& spherical surface 1s covered by
- combination of two 1dentical parts (patches).

o

- ONE Seartn.




Combining Two Identical Sub-grids
to Cover a Full Sphere




Combining Two Identical Sub-grids
to Cover a Full Sphere




Combining Two Identical Sub-grids
to Cover a Full Sphere

Yin- Yang B



Yin-Yang grid 1s an Overset Gnid
on the Spherical Geometry

ofartial overiap
between Yin and
Tang grids.

Interpolation
C——> boundary condition



Two Component Grids of Yin-Yang:
Yin grid & Yang grid




Suppaose & polat on the sphere with Yin (or n) cocedinates given by

- " -~

Yt ar)

and with Yang (or ¢) coordinates given by
(2,9 2°)

Thelr relation s given by

or

The coordinates relations are
symmettic (complemental).




Concise Coding of Yin-Yang Grid:

- Make one routine on the {partial) latitude-longitude grid.
- Recyele it for two times; one for Yin and another for Yang.

Routines for

- MAD solver

- boundary conditions
z - interpolations
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Vector-Parallel Computation
on Yin-Yang Grid

2-dimensional domain decomposition
in the horizontal computational space.




Parallelization Technique:
2 Levels of MPI Communicator

-Iin/ Yang communicator
-11n ‘s communicator
-Fang s communicaior

-Overall world communicator|; .\

Fortran90 code:

gRunneriworldicormunicator
gRunner’panelcormunicator
gRunner’panelrankine
gRunner’paneljrankinorth
gRunner’panelfgridinr
gRunner’paneligridijstt

' - —

o~
N o

e g Vone gvid

comzunicator for entire Yin-Yang.
communicator for Yinm or Yang.
rank index in Yin or Yang.

rank index of north neighbor
grid size in radial direction
grid point of north border



Performance of the Yin-Yang

Geodynamo Simulation code
on the Earth Simulator

flat MPT |
Processors erid points| 1 flops|efficiency
3888|511 x 514 x 1538 x 2| 13.8 447
3888|255 x 514 x 1538 x 2| 12.1 39%
2560(511 x 514 x 1538 x 2| 10.3 50%
25601255 X 514 X 1538 x 2| 9.17 45%
1200255 X 514 X 1538 X 2 5.40 56'%

4096 | 511 x 514 x 1538 x 2| 152 46.3%




Epilogue:

Ying-Yang has been found to be not too efficient In
variable viscosity, high Rayleigh number convection.
The parallel version does not run that fast and
Charley’s code I1s much faster, when cast in spherical-
Internal boundary.




