The Work of Japanese Researchers at the Earth Simulator Center

- 1. Pseudo-Compressibility Method in 3-D Mantle Convection Charley Kameyama
- 2. Ying-Yang Scheme in discretizing the Spherical Geometry: An Attempt to Overthrow the Spherical Harmonic Reich

Akira Kageyama

ACuTEMan

A multigrid-based mantle convection simulation method and its optimization to the Earth Simulator

Masanori Kameyama

kameyama@jamstec.go.jp

Earth Simulator Center (ESC)

Japan Agency for Marine-Earth Science and Technology

Email: kameyama@jamstec.go.jp

URL: http://www.es.jamstec.go.jp/esc/research/Solid/members/kameyama/

Simulation Procedure in General

(Anelastic fluid and Boussinesq approximations are assumed)

do time-marching loop solve energy equation (update temperature T) $\frac{DT}{Dt} = \nabla \cdot (\kappa \nabla T) + q$ **solve** for flow field (update velocity v and pressure p) $= \nabla \cdot \boldsymbol{v}$ $0 \simeq \frac{1}{Pr}\frac{D\boldsymbol{v}}{Dt} \ \ = \ \ -\nabla p + \nabla \cdot \left[\frac{\eta}{2}(\nabla \otimes \boldsymbol{v} + \boldsymbol{v} \otimes \nabla)\right] + Ra\,Te_z$ end do time-marching loop

Difficulty in Simulations

Solution for flow field is very time-consuming

$$
0 \simeq \frac{1}{Pr} \frac{Dv}{Dt} = -\nabla p + \nabla \cdot \left[\frac{\eta}{2} (\nabla \otimes \boldsymbol{v} + \boldsymbol{v} \otimes \boldsymbol{v}) \right] + Ra \, Te_z
$$

$$
0 = \nabla \cdot \boldsymbol{v}
$$

Causes of difficulty

incompressible (or anelastic) fluid

- \Rightarrow no equation for directly solving pressure field
- \Box extremely high viscosity ($\eta \sim 10^{22}$ Pas)
	- \Rightarrow inertia term becomes negligibly small $(Pr \sim 10^{24})$
	- = steady-state flow must be solved at every timestep
- □ strong spatial variation in viscosity (in vertical/horizontal direction)
	- \Rightarrow spectral method is not suitable

Aim of This Study

To develop an efficient algorithm

 \Box (from viewpoint of mantle convection simulations)

for solving and a steady-state flow of
for solving and incompressible fluid with
strong spatial variation in viscosity

in large-scale 3-D domain

$$
0 = -\nabla p + \nabla \cdot \left[\frac{\eta}{2} \left(\nabla \otimes \mathbf{v} + \mathbf{v} \otimes \nabla \right) \right] + Ra \, T \mathbf{e}_z
$$

$$
0 = \nabla \cdot \mathbf{v}
$$

 \Box (from computational viewpoint)

for solving $\left\{\begin{array}{l}\text{a set of elliptic equations} \\ \text{with strongly varying coefficients and} \\ \text{large number of unknowns}\end{array}\right.$

- making good use of multigrid technique
- with sufficient vector/parallel efficiency

Proposed Algorithm (1)

For steady-state flow of highly viscous incompressible fluid

$$
0 = -\nabla p + \nabla \cdot \left[\frac{\eta}{2} (\nabla \otimes \boldsymbol{v} + \boldsymbol{v} \otimes \nabla) \right] + Ra \, T \boldsymbol{e}_z
$$

 $0 = \nabla \cdot v$ (for given temperature T and viscosity η)

Ingredient 1: Pseudo-Compressibility Method

 \Box integrates pseudo-evolutionary equations for v and p to steady-state

 \Box describes pseudo-evolution of pressure p using artificial compressibility

$$
M\frac{\partial v}{\partial \tau} = -\nabla p + \nabla \cdot \left[\frac{\eta}{2} (\nabla \otimes v + v \otimes \nabla)\right] + Ra \, T e_z
$$

\n
$$
-K\frac{\partial p}{\partial \tau} = \nabla \cdot v
$$

\nWhere τ : pseudo-time
\n*M*: pseudo-density
\n*K*: pseudo-compressibility

Pseudo-Compressibility Method?

- \Box The good
	- always converges to incompressible flow field (owing to viscous damping)

$$
\frac{\partial^2}{\partial \tau^2} (\nabla \cdot \mathbf{v}) = \underbrace{\frac{1}{KM} \nabla^2 (\nabla \cdot \mathbf{v})}_{\text{''pseudo-sound''}} + \underbrace{\frac{\eta}{M} \frac{\partial}{\partial \tau} [\nabla^2 (\nabla \cdot \mathbf{v})]}_{\text{viscous damping}} + \cdots
$$

- \blacktriangleright deals with primitive variables (velocity v and pressure p)
	- \rightarrow applicable both to 2-D and 3-D problems
- $=$ simple and easy
	- \rightarrow only integrates (pseudo-)evolutionary equations
- \Box The bad
	- $=$ converges very slowly
		- \rightarrow very slow reduction in long-wavelength error (because of diffusion equation)
			- \Rightarrow must be used with multigrid method

Proposed Algorithm (2)

What happens in case with spatial variation in viscosity η ?

$$
M\frac{\partial v}{\partial \tau} = -\nabla p + \nabla \cdot \left[\frac{\eta}{2} (\nabla \otimes v + v \otimes \nabla)\right] + Ra \, T e_z
$$

$$
-K\frac{\partial p}{\partial \tau} = \nabla \cdot v
$$

"local convergence rate" for velocities $v \propto \eta$ \rightarrow yields slow convergence where η is small

Ingredient 2. Local Time-Stepping Method

\Box varies "effective" time-steppings $\Delta \tau / M$ and $\Delta \tau / K$ in space

- \Rightarrow simply achieved by varying "artificial" density M and compressibility K in space
- \Rightarrow neither M nor K needs to be "realistic" values

Proposed Algorithm (3)

Appropriate form of spatial variations in M and K ?

$$
M\frac{\partial v}{\partial \tau} = -\nabla p + \nabla \cdot \left[\frac{\eta}{2} (\nabla \otimes v + v \otimes \nabla) \right] + Ra \, T e_z
$$

$$
-K\frac{\partial p}{\partial \tau} = \nabla \cdot v
$$

Hint: Pseudo-temporal evolution of flow field is characterized by,

$$
\frac{\partial^2}{\partial \tau^2} (\nabla \cdot \mathbf{v}) = \underbrace{\frac{1}{KM} \nabla^2 (\nabla \cdot \mathbf{v})}_{\text{rpseudo-sound}^* \text{ propagation}} + \underbrace{\frac{\eta}{M} \frac{\partial}{\partial \tau} \left[\nabla^2 (\nabla \cdot \mathbf{v}) \right] + \cdots}_{\text{viscous damping}}
$$

To remove influences of variation in η ,

minimize spatial variations in Choose rate of effective viscous "damping" η/M rate of "pseudo-sound" propagation $1/\sqrt{KM}$ $M \propto \eta$
 $K \propto \eta^{-1}$

Benchmark Test

with Busse et al. (1993)

Comparison with Ogawa et al. (1991)

18 sec/step for Case 18 (with 10^5 viscosity contrast) with Pentium IV 2.20GHz (NB: started from different initial conditions)

Convergence Tests (0)

Pseudo-temporal integration is used as a smoother of multigrid method

Example: 3-D thermal convection in a cube with $64\times64\times64$ mesh divisions and strongly temperature-dependent viscosity

3 Types of pre/post-smoothing iterations are tested

 \rightarrow to find robust implementation for strong viscosity variation

Convergence Tests (2)

For the case with larger local temperature variations Temperature-dependent viscosity $\eta \propto \exp[-T \ln (\eta_{\text{max}}/\eta_{\text{min}})]$

- □ Convergent up to $\eta_{\text{max}}/\eta_{\text{min}} = 10^6$
- \Box Larger local temperature variation \rightarrow Larger local viscosity variation \Rightarrow More "ill-conditioned"
- \Box Better choice of initial condition can lead to convergence

Multigrid Optimization

- □ "agglomeration": Key to massive parallelization of multigrid calculations
	- \Rightarrow activate all PEs in calculations on fine grid levels
	- \Rightarrow activate 1 PE only in calculations on coarse grid levels
	- to reduce communication overheads

Performance on the Earth Simulator

 $1024\times1024\times256$ mesh division, Multigrid 8 levels, 64PN(=512PE) $Ra = 10⁷$, constant viscosity, 1000 timesteps

MPI Program Information: ------------------------Note: It is measured from MPI Init till MPI Finalize. [U,R] specifies the Universe and the Process Rank in the Universe. Global Data of 512 processes: Min [U, R] Max [U, R] Average ----------------------------Real $Time (sec)$ 2167.564 [0,79] 2168.180 [0,184] 2168.026 \mathbf{r} User Time (sec) $: 2148.951 [0, 398]$ 2161.454 [0,219] 2156.579 System Time (sec) 3.240 [0,231] 7.921 [0,280] 3.950 \mathbf{r} $\sim 10^{-10}$ 1886.794 [0,70] 1999.746 [0,0] Vector Time (sec) 1907.307 Instruction Count : 172586180925 [0,56] 204325670446 [0,0] 175903786565 Vector Instruction Count : 45725028280 [0,1] 59885749447 [0,0] 46845002132 Vector Element Count : 8972700070279 [0,295] 11284593905563 [0,0] 9115733866864 FLOP Count : 3141552699120 [0,1] 4245768380296 [0,0] 3222272951859 4286.788 MOPS 4219.400 [0,231] \cdot 5290.575 [0,0] 1965.394 [0,0] **MFLOPS** 1454.453 [0,1] 1494.161 \cdot Average Vector Length : 188.435 [0,0]

Vector Operation Ratio (%) : 98.584 [0,124]

Memory size used (MB) : 979.454 [0,1] 199.675 [0,1] 194.601 98.736 [0,0] 98.604 1043.454 [0.2] 1011.461 Overall Data: -------------Real Time (sec) 2168.180 $\ddot{}$ $\frac{1104168.311}{2.2}$ sec/step User Time (sec) 2022.255 System Time (sec) \mathbf{z} $\frac{1}{2}$ $\frac{976541.389}{2194.835}$ 18.68% of peak performance Vector Time (sec) GOPS (ra) , to User Time) \cdot 765.010 GFLOPS (rel. to User Time) : 505.730 99.91% parallelization efficiency Memory size used (GB) \mathbf{r}

fastest "made-in-Japan" code

ing calculation against grid levels

ratios of execution times of total smoothing calculations for all grid levels

□ "agglomeration" considerably improves the efficiency of coarse-grid calculations (by removal of communication overheads) \rightarrow no serious loss of overall efficiency

References

□ Masanori Kameyama, Akira Kageyama, and Tetsuya Sato, Multigrid iterative algorithm using pseudo-compressibility for three-dimensional mantle convection with strongly variable viscosity,

Journal of Computational Physics, 206 (1), 162-181, 2005.

□ Masanori Kameyama, ACuTEMan: A multigrid-based mantle convection simulation code and its optimization to the Earth Simulator, Journal of the Earth Simulator, 4, 2-10, 2005. available via: http://www.es.jamstec.go.jp/esc/eng/publications/

Yin-Yang Grid

The Earth Simulator Center JAMSTEC, Japan

Akira Kageyama

Two "Pole Problems" of the Latitude-Longitude (lat-lon) Grid

1. Coordinate singularity on the poles - special care should be taken 2. Grid convergence near the poles - needs a spherical filter for CFL - waste of CPU time

Re-view the Lat-Lon Grid

It is almost ideal grid in the low latitude region.

- It is orthogonal coordinates (simple metrics)
- Nearly uniform grid spacing

Baseball

A spherical surface is covered by

- combination of two identical parts (patches).
- one seam.

Combining Two Identical Sub-grids to Cover a Full Sphere

Combining Two Identical Sub-grids to Cover a Full Sphere

Combining Two Identical Sub-grids to Cover a Full Sphere

Yin-Yang 陰陽

Yin-Yang grid is an Overset Grid on the Spherical Geometry

Two Component Grids of Yin-Yang: Yin grid & Yang grid

Concise Coding of Yin-Yang Grid:

- Make one routine on the (partial) latitude-longitude grid. - Recycle it for two times; one for Yin and another for Yang.

Routines for

- MHD solver
- boundary conditions
- interpolations

Vector-Parallel Computation on Yin-Yang Grid

Parallelization Technique: 2 Levels of MPI Communicator

-Overall world communicator -Yin/Yang communicator -Yin's communicator -Yang's communicator

Fortran90 code:

gRunner%world%communicator gRunner%panel%communicator gRunner%panel%rank%ne gRunner%panel%rank%north gRunner%panel%grid%nr gRunner%panel%grid%jstt

- communicator for entire Yin-Yang.
- communicator for Yin or Yang.
- rank index in Yin or Yang.
- rank index of north neighbor
- grid size in radial direction
- grid point of north border

Performance of the Yin-Yang Geodynamo Simulation code on the Earth Simulator

Epilogue:

Ying-Yang has been found to be not too efficient in variable viscosity, high Rayleigh number convection. The parallel version does not run that fast and Charley's code is much faster, when cast in sphericalinternal boundary.