
COMPUTATIONAL INFRASTRUCTURE FOR GEODYNAMICS (CIG)

User Manual
Version 3.1.1

John M. Wilson Kasey W. Schultz Eric M. Heien Michael K. Sachs
Mark R. Yoder John B. Rundle Donald L. Turcotte

www.geodynamics.org

Virtual Quake User Manual

John M. Wilson
Kasey W. Schultz

Eric M. Heien
Michael K. Sachs

Mark R. Yoder
John B. Rundle

Donald L. Turcotte

©University of California, Davis
Version 3.1.1

December 8, 2017

2

Contents

I Preface 9

II Chapters 13

1 Introductions 15
1.1 About Virtual Quake . 15
1.2 History . 15
1.3 About QuakeLib . 16

2 VQ Components and Governing Equations 17
2.1 Fault Model . 17

2.1.1 Included California Fault Model . 17
2.1.2 Model Parameters and Initial Conditions . 17
2.1.3 Setting Fault Parameters and Building a Fault Model . 17

2.2 Element Stress Interactions . 20
2.2.1 Green’s Functions . 20
2.2.2 Event Transition Time . 21

2.3 Rupture Model . 21
2.3.1 Stress Drops . 22
2.3.2 ETAS Aftershock Model . 23

2.4 Simulation Flow . 23
2.5 QuakeLib Tour . 24

2.5.1 Conventions . 24
2.5.2 Single Element Examples . 24

2.5.2.1 Stress Field . 24
2.5.2.2 Displacement Field . 25
2.5.2.3 Gravity Field Anomalies . 25

2.5.3 Topologically Realistic Examples . 25
2.5.3.1 Displacement Field . 27
2.5.3.2 Gravity Field Anomalies . 27

3 Getting Started and Installation 31
3.1 Introduction . 31
3.2 Getting Help . 31
3.3 Compiling from Source . 31

3.3.1 System Requirements . 31
3.3.2 Obtaining Source . 31
3.3.3 Installation Procedure . 32

3.3.3.1 Mac OS X . 32
3.3.3.2 Install Locations . 32
3.3.3.3 Selecting a Compiler — Multiprocessing . 33
3.3.3.4 HDFView . 33

3

4 CONTENTS

3.4 Docker Image . 33
3.4.1 Initial Setup . 33
3.4.2 Running a Container . 33
3.4.3 Running Simulations . 33

4 Running VQ 35
4.1 Introduction . 35
4.2 Basic Usage and Tests . 35

4.2.1 CMake Tests . 35
4.2.2 Explicit Test Simulation . 36

4.3 Advanced Usage . 36
4.3.1 Tuning Parameters . 36
4.3.2 Simulation Performance and Scaling . 36
4.3.3 Element Size and Minimum Magnitude . 38

5 Tutorials 39
5.1 Overview . 39

5.1.1 Prerequisites . 39
5.2 Building a Fault Model . 39

5.2.1 Trace File . 39
5.2.2 Example Traces . 40
5.2.3 Friction Parameters . 40
5.2.4 Simulation Parameter File . 40
5.2.5 Producing a Fault Model . 40
5.2.6 Using the Mesher . 40

5.2.6.1 Taper Functionality . 41
5.2.7 Parameter File . 41
5.2.8 Bounding the Greens Functions . 41
5.2.9 Periodically Saving the Simulation State . 42

5.3 Single Element Tutorial . 43
5.3.1 Overview . 43
5.3.2 Creating Input Files . 43
5.3.3 Edit Parameter File . 44
5.3.4 Running VQ . 45
5.3.5 Results . 45

5.4 Tutorial Using Multiple Elements . 45
5.4.1 Overview . 45
5.4.2 Creating Input Files . 45
5.4.3 Running VQ . 46
5.4.4 Results . 47

5.5 Multiple Fault Trace Points . 47
5.5.1 Overview . 47
5.5.2 Input Files . 47
5.5.3 Running VQ . 48
5.5.4 Results . 48

5.6 Building the full California Fault Model . 49
5.6.1 Overview . 49

5.7 Virtual Quake Data Analysis Tutorial (PyVQ) . 49
5.7.1 Overview . 49
5.7.2 Simulation Statistics Plots . 50
5.7.3 Overview Plots/Functions . 50
5.7.4 Time Series Plots . 51
5.7.5 Space-Time Plots . 51
5.7.6 Earthquake Probability Plots . 52

CONTENTS 5

5.7.7 Plotting Data on a Map and Event Field Plots . 53
5.8 PyVQ Plotting Arguments Grouped by Functionality . 58

5.8.1 Model File Parameters . 58
5.8.2 Subsetting/Filtering Parameters . 58
5.8.3 Statistical Plotting Parameters . 58
5.8.4 Time Series Plotting Parameters . 59
5.8.5 Probability Plotting Parameters . 59
5.8.6 Field Plotting Parameters . 60
5.8.7 Geometry/Model Plotting Parameters . 61
5.8.8 Miscellaneous Plotting Parameters . 61

III Appendices 63

A Input Parameters for Virtual Quake 65
A.1 Input Parameters Grouped by Functionality . 65

A.1.1 Simulation time parameters . 65
A.1.2 System Parameters . 65
A.1.3 Friction parameters . 65
A.1.4 Green’s function parameters . 67
A.1.5 File I/O parameters . 68
A.1.6 BASS (Branching Aftershock Sequence) model parameters 68

B Virtual Quake Input Model Format 69
B.1 Trace File Format . 69

C Mesher Program Options 71
C.1 Mesher Options Grouped by Functionality . 71

C.1.1 General Options . 71
C.1.2 File Import Options . 71
C.1.3 File Export Options . 72

D Virtual Quake Output File Format 73
D.1 Introduction . 73
D.2 HDF5 Output . 73

D.2.1 About HDF5 . 73
D.2.1.1 Accessing Data Using HDFView . 73

D.3 Events . 74
D.4 Event Sweeps . 74

E License 75

6 CONTENTS

List of Figures

2.1 California fault system based on UCERF2, meshed into fault elements and shown above ground. . . . 18
2.2 An example of how element size will affect the tracking of the mesh along a fault trace. 19
2.3 A demonstration of meshing with different resolutions. 20
2.4 Top: The CFF for each of the 48 elements comprising the Parkfield section of the San Andreas fault.

Drops in CFF correspond to stress release in events, with larger events consisting of many elements
releasing stress. Bottom: detail of rupture sweeps from the event at t=593. The trigger element is
shown bold. Note that elements may experience multiple failures, such as the trigger element failing
during sweeps 0, 7, and 11. 22

2.5 Simulation flow of Virtual Quake. 23
2.6 QuakeLib defines each fault element with parameters following Okada’s convention. 24
2.7 The shear stress field σxy (tan σxy > 0, blue σxy < 0) created by horizontal backslip, viewed from the

front and top of an element. The direction of backslip is indicated by the arrows. 25
2.8 Vertical displacement at the surface for buried fault elements, depth to top of each fault plane is 1km,

colorbar units are meters. Left: strike-slip δ = 90◦. Center: normal δ = 60◦. Right: thrust δ = 30◦. 26
2.9 Gravitational anomalies for the fault elements in Figure 2.8, colorbar units are µgal. 26
2.10 Simulated InSAR interferogram showing vertical displacements for a large earthquake (moment mag-

nitude 7.79) involving multiple sections of the southern San Andreas Fault (thick white lines), as seen
by an orbiting satellite. 28

2.11 Simulated surface gravity anomalies for the same simulated earthquake as in Figure 2.10. 29

4.1 With the stress drop factor set to 0.7, this is the effect of tuning the dynamic trigger factor η on the
frequency-magnitude distribution. These are 10,000 year simulations of the UCERF3 fault model
compared to observed California earthquake rates and 95% confidence bounds in red. 37

4.2 With the dynamic trigger factor set to η = 0.5, this is the effect of tuning the stress drop factor ∆M on
the frequency-magnitude distribution. These are 10,000 year simulations of the UCERF3 fault model
compared to observed California earthquake rates and 95% confidence bounds in red. 37

4.3 Number of elements determines computational cost - this will vary depending on the relative rake and
dip. Element size governs simulated earthquake magnitude range. 38

4.4 Tradeoffs in element size and resource requirements. 38

5.1 Example histogram of shear stress Greens function values with best fit Gaussian and bounds. 42
5.2 Single 3km x 3km fault element running under the Golden Gate Bridge in San Francisco, shown above

ground. This plot was generated by Google Earth from the mesher generated KML file. 44
5.3 The same 3km x 3km fault section from figure 5.2 but meshed into 1km x 1km elements. This plot

was generated by Google Earth from the mesher output KML file. 47
5.4 Two fault sections that meet at the UC Davis campus. The fault sections are 15km x 12km and meshed

into 3km x 3km elements. This plot was generated by Google Earth from the mesher output KML file. 49
5.5 Example frequency-magnitude distribution. 50
5.6 Left: Example magnitude vs rupture area distribution. Right: Example magnitude vs mean slip

distribution. Compare these to Wells and Coppersmith 1994 relations. 51
5.7 Left: Slip time series for element #20 Right: Slip time series for all elements in section 0, SAF-

Mendo Offs. 51

7

8 LIST OF FIGURES

5.8 Space-time plot for simulated earthquakes from year 21000 to year 23000 on fault 153. 52
5.9 Left: Conditional probability of an earthquake M ≥ 7 on the specified sections as a function of time

since the last earthquake M ≥ 7. Right: Distribution of waiting times until the next earthquake M ≥ 7
for waiting times with 25%, 50% and 75% probability. 53

5.10 Slips for event 0. The triggering element is shown with the white place marker. Color scale is white
(almost zero slip) to red (max slip). 54

5.11 Left: Gravity changes for 5m slip on a 10km by 10km vertical strikeslip fault. Right: Gravity changes
for 1m slip on a 10km by 10km normal fault with dip angle 30 degrees. 54

5.12 Simulated InSAR interferogram for magnitude 7.26 earthquake on the San Andreas Fault. 56
5.13 Simulated gravity changes for magnitude 7.26 earthquake on the San Andreas Fault. 57

Part I

Preface

9

Preface

About This Document
This document is organized into three parts. Part I consists of traditional book front matter, including this preface.
Part II begins with an introduction to Virtual Quake, the QuakeLib library, and their capabilities then proceeds to the
details of implementation. Part III provides appendices and references for input and output files and parameters.

Errors and bug fixes in this manual should be directed to the CIG Short Term Crustal Dynamics Mailing List
(cig-short@geodynamics.org). Please specify which code and version you are using when reporting a problem.

Who Will Use This Document
This documentation is aimed at two categories of users: scientists who prefer to use prepackaged and specialized
analysis tools, and experienced computational Earth scientists. Of the latter, there are likely to be two classes of users:
those who just run models, and those who modify the source code. Users who modify the source are likely to have
familiarity with scripting, software installation, and programming, but are not necessarily professional programmers.

The manual was written for the usage of Virtual Quake on a variety of different platforms. Virtual Quake has run
on shared memory computers (Sun, Hewlett-Packard, SGI, and IBM), commercial distributed memory machines (Intel
and Cray/SGI), clusters (including machines on NSF XSEDE), Linux PCs and Mac OS X desktops.

Citation
Computational Infrastructure for Geodynamics (CIG) is making this source code available to you in the hope that
the software will enhance your research in geophysics, and probabilistic seismic hazard analysis. The underlying
C++ code for the Greens function calculations, stress evolution, simulation framework, and the QuakeLib library and
associated Python bindings and testing framework were donated to CIG in July of 2014. A number of individuals
have contributed a significant portion of their careers toward the development of Virtual Quake. It is essential that you
recognize these individuals in the normal scientific practice by citing the appropriate peer reviewed papers and making
appropriate acknowledgements.

To cite the Virtual Quake project:

• Wilson J.M., Schultz K.W., Heien E.M., Sachs M.K., Yoder M.R., Rundle J.B., Turcotte D.L. (2017), Vir-
tual Quake [software], Computational Infrastructure for Geodynamics, Available from: geodynamics.org, doi:
10.5281/zenodo.797896, url: (https://geodynamics.org/cig/software/vq/)

To cite a specific version of the software, please see the citation builder for that version at (https://geodynamics.
org/cig/software/vq/)

Additionally, the Virtual Quake development team asks that you cite the following:

• Schultz, K. W. and Yoder, M. R. and Wilson, J. M. and Heien, E. M. and Sachs, M. K. and Rundle, J.
B. and Turcotte, D. L. (2017) ”Parametrizing physics-based earthquake simulations”, Pure Appl. Geophys.
doi:10.1007/s00024-016-1428-3

• Schultz, K. W. and Sachs, M. K. and Heien, E. M. and Rundle, J. B. and Turcotte, D. L. and Donnellan, A. (2016)
”Simulating Gravity Changes in Topologically Realistic Driven Earthquake Fault Systems: First Results”, Pure
Appl. Geophys. doi:10.1007/s00024-014-0926-4

11

cig-short@geodynamics.org
https://geodynamics.org/cig/software/vq/
https://geodynamics.org/cig/software/vq/
https://geodynamics.org/cig/software/vq/
https://doi.org/10.1007/s00024-016-1428-3
http://dx.doi.org/10.1007/s00024-014-0926-4

12

• Schultz, K. W. and Sachs, M. K. and Heien, E. M. and Yoder, M. R. and Rundle, J. B. and Turcotte, D. L.
and Donnellan, A. (2015) ”Virtual Quake: Statistics, Co-Seismic Deformations and Gravity Changes for Driven
Earthquake Fault Systems”, International Association of Geodesy Symposia doi:10.1007/1345 2015 134

• Eric M. Heien, Michael Sachs, ”Understanding Long-Term Earthquake Behavior through Simulation,” Comput-
ing in Science and Engineering, vol. 14, no. 5, pp. 10-20, Sept.-Oct. 2012, doi:10.1109/MCSE.2012.39

• Sachs, M.K., Heien, E.M., Turcotte, D.L., Yikilmaz, M.B., Rundle, J.B., Kellogg, L.H. ”Virtual Califor-
nia Earthquake Simulator” Seismological Research Letters, November/December 2012, v. 83, p. 973-978,
doi:10.1785/0220120052

And to cite the manual:

• Wilson J.M., Schultz K.W., Heien E.M., Sachs M.K., Yoder M.R., Rundle J.B., Turcotte D.L. (2017), Virtual
Quake User Manual, Version 3.1.1. Davis, California, USA: Computational Infrastructure for Geodynamics.
URL: https://geodynamics.org/cig/software/vq/vq manual 3.1.1.pdf

The developers also request that in your oral presentations and in your paper acknowledgements that you indicate
your use of this code, the authors of the code, and CIG (geodynamics.org).

Support
Support for this work and researchers was provided by multiple sources. This work was supported by the National
Aeronautics and Space Administration (NASA) grant number NNX08AF69G, JPL subcontract number 1291967, and
NASA Earth and Space Science Fellowship number NNX11AL92H. Support was also given by the Southern Cal-
ifornia Earthquake Center (SCEC). SCEC is funded by the National Science Foundation Cooperative Agreement
EAR-0529922 and U.S. Geological Survey (USGS) Cooperative Agreement 07HQAG0008. This work also used the
Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foun-
dation grant number OCI-1053575. Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Conventions
Throughout this documentation, any mention of “username” is meant to indicate the user, meaning you should substi-
tute your account name in its place.

http://dx.doi.org/10.1007/1345_2015_134
http://dx.doi.org/10.1109/MCSE.2012.39
http://dx.doi.org/10.1785/0220120052
https://geodynamics.org/cig/software/vq/vq_manual_3.1.1.pdf
geodynamics.org

Part II

Chapters

13

Chapter 1

Introductions

Virtual Quake is a boundary element code designed to investigate long term fault system behavior and interactions
between faults through stress transfer. It is released under the MIT Public License (see Appendix E). The core code
is written in C++ and can be run on a variety of parallel processing computers, including shared and distributed
memory platforms. To allow increased functionality including development of other simulators, analysis scripts, and
visualization tools, some key components of Virtual Quake have been placed in the QuakeLib library which can be
called from C/C++ programs or Python scripts. The QuakeLib library uses the SWIG framework and can therefore be
extended to a wide variety of other languages as well.

1.1 About Virtual Quake
Virtual Quake is a boundary element code that performs simulations of fault systems based on stress interactions
between fault elements to understand long term statistical behavior. It performs these simulations using a model of
faults embedded in a homogeneous elastic half space with arbitrary dips and rakes.

The code performs calculation assuming linear stress increase in the long term based on element-element interac-
tion calculations governed by Okada’s implementation of Green’s functions. During the rupture (earthquake) phase
elements may fail and release stress based on a combination of static and dynamic stress thresholds. The behavior
of the system is determined by interactions between elements from the Green’s function and the stress release from
elements during events. More detail about the equations and physics of the simulation is described in Section 2.

1.2 History
Virtual Quake (abbreviated VQ) was originally named Virtual California (VC) until release 1.1 in November 2014.
It started as a limited simulation model for distributed seismicity on the San Andreas and adjacent faults in southern
California, developed by Rundle [5] in Fortran. This model included stress accumulation, release and interactions
between faults to investigate earthquake dynamics in southern California. The model was updated in the early to
mid-2000s [6, 4, 7] to include major strike-slip faults in California and was named Virtual California. This model
and simulation was used to examine recurrence time statistics on California faults by Yakovlev [11], where it was
concluded that the return times on a fault is well approximated by a Weibull distribution.

In 2010 Virtual California was rewritten by Eric Heien in C++ to have a more modular simulation framework and
add support for multiprocessor simulation using OpenMP and MPI. The fault model in Virtual California was also
more cleanly separated from the fundamental stress calculation to allow simulation of other fault systems, including
the Nankai trough in Japan [12]. Additional features were also added, including a branching aftershock sequence
(BASS) model simulation of aftershocks [13], improved stress Green’s function calculations, more sophisticated rup-
ture propagation, and support for parallel HDF5 output. Virtual California was also used in an effort by the Southern
California Earthquake Center to unify and compare the results from several earthquake simulators [8].

In 2011 and 2012, core components of Virtual California were separated into the QuakeLib library and used
to create analysis and visualization tools. Improvements to simulation performance were also developed, including
speculative execution for rupture propagation and a Barnes-Hut style approximation scheme for the Green’s functions.

15

16 CHAPTER 1. INTRODUCTIONS

To reflect the fact that it supports a flexible fault model, Virtual California was renamed Virtual Quake (abbreviated
VQ) on release 1.1 in November 2014.

1.3 About QuakeLib
QuakeLib is a C++ library containing key mathematics, geophysics and I/O functionality related to earthquake sim-
ulation and result analysis. QuakeLib is currently distributed with and is used by Virtual Quake, though it can be
compiled and installed by itself on a machine. More specifically, QuakeLib contains 1) functions to read, write and
validate fault models and earthquake catalogs in the EqSim format, 2) C++ classes to represent and access these mod-
els and catalogs, 3) C++ classes to represent faults and associated fault parameters as well as functionality related
to the faults, 4) C++ classes and functions to perform vector mathematics and unit/geographic conversions related to
modeling, 5) functions to evaluate stress and displacement fields based on Okada’s equations [3] given a rectangular
fault or point source.

QuakeLib is also written to support extension to other scripting languages through the use of the Simplified Wrap-
per and Interface Generator (SWIG) [2]. Currently this supports wrapping the QuakeLib library in a Python interface
though additional scripting languages can be easily added. The scripting extension allows researchers to write analysis
and visualization scripts based on the same equations and data formats as the simulation. The Python interface is
also used as the basis for a testing framework to ensure that any changes made to the code do not affect the scientific
results and that computations on different platforms yield the same results within a specified tolerance. Currently the
QuakeLib library is wrapped into a python module called “quakelib” that is utilized by the plotting and analysis scripts
located in the “pyvq” folder, examples are given later in the text.

Chapter 2

VQ Components and Governing Equations

There are three major components that make up Virtual Quake: a fault model, a set of quasi-static interactions (Green’s
functions), and an event model.

The first three sections cover the main components of a VQ simulation, the fourth section describes the simulation
flow, and the last section gives a visual tour of the QuakeLib module’s functionality.

2.1 Fault Model
The basic components of the fault model are the fault elements and their parameters. Any fault system, specified by
a trace file listing the latitude and longitude of each vertex along the traces, is split up into the functional members of
a Virtual Quake simulation, the fault elements. The resolution of the fault system will determine the total number of
elements, and each element’s parameters determine the local fault geometry and motion.

Each element in the model is given a constant back-slip velocity along a fixed rake vector and a failure stress. The
rake vector always lies in the plane of the element. The failure stresses, which are also required for the model, are
derived from paleoseismic event recurrence times.

2.1.1 Included California Fault Model
The full model for the California fault system that is included with VQ is based on the ALLCAL2 fault model, shown
in Figure 2.1. A detailed description of the ALLCAL2 model is at (http://scec.usc.edu/research/eqsims/
documentation.html), and description of file formats is in [1]. The model includes 181 fault sections roughly
corresponding to known faults in California, with some faults modeled by multiple sections. Each fault section is
meshed into square elements that are roughly 3 km × 3 km, for a total of 14,474 elements. In the present version of
our model, the creeping section of the San Andreas fault is removed. This is because in the current simulation physics,
this section produces many small events and considerably slows down the simulation.

2.1.2 Model Parameters and Initial Conditions
Virtual Quake currently requires that the user specify the fault geometry and the stress parameters on each element
then run the simulation based on this. These parameters are briefly described in the following section, and explicit
example fault models are constructed in chapter 5.

2.1.3 Setting Fault Parameters and Building a Fault Model
VQ treats a system of faults as multiple planar elements embedded in a flat homogeneous halfspace. To run Virtual
Quake the first step is to define a fault system using a set of traces. Each trace describes the points along a given fault
closest to the surface as well as fault characteristics at each trace point, such as long term velocity, dip angle, rake
angle, depth, etc. Details about the trace file format are shown in Appendix B.1.

17

http://scec.usc.edu/research/eqsims/documentation.html
http://scec.usc.edu/research/eqsims/documentation.html

18 CHAPTER 2. VQ COMPONENTS AND GOVERNING EQUATIONS

Figure 2.1: California fault system based on UCERF2, meshed into fault elements and shown above ground.

In this example we look at the earthquake cycle and rupture mechanics on a single 12 km by 12 km square fault.
For simplicity, the trace of this fault runs eastward for 12km starting from latitude/longitude (0,0) and ending at lati-
tude/longitude (0,0.1078). The definition of this fault is in the file examples/fault traces/single fault trace.txt

and is also shown below.

fault_id: ID number of the parent fault of this section

sec_id: ID number of this section

num_points: Number of trace points comprising this section

section_name: Name of the section

0 0 2 One_Element_Example

latitude: Latitude of trace point

longitude: Longitude of trace point

altitude: Altitude of trace point (meters)

depth_along_dip: Depth along dip (meters)

slip_rate: Slip rate at trace point (centimeters/year)

aseismic: Fraction of slip that is aseismic at point

rake: Fault rake at trace point (degrees)

dip: Fault dip at trace point (degrees)

lame_mu: Lame’s mu parameter at trace point (Pascals)

lame_lambda: Lame’s lambda parameter at trace point (Pascals)

0 0 0 12000 1 0 180 90 3e+10 3.2e+10

0 0.1078 0 12000 1 0 180 90 3e+10 3.2e+10

The first non-comment line in this file gives the fault ID, section ID, number of trace points, and section name. In this
example, the section is named “One Fault Example” and has section number 0. The section is associated with fault
number 0. This naming convention is used to allow a large fault to be split into multiple sections for identification, but
maintain the same physical properties as a single full fault.

The remaining non-comment lines give the fault characteristics at each trace point. This file defines two trace
points, the first at latitude/longitude (0,0) and the second at (0, 0.1078), with both at altitude 0. At each point the fault
extends 12,000 meters down and has a slip rate of 1 cm/year with 0 aseismicity. The fault is right lateral strike slip

2.1. FAULT MODEL 19

(a) Using an element size that exactly aligns with the trace, the gener-
ated elements will exactly follow the trace.

(b) A slightly smaller element size results in a mesh that does not exactly
follow the trace.

Figure 2.2: An example of how element size will affect the tracking of the mesh along a fault trace.

(rake of 180°, dip of 90°). The Lamé parameters of µ = 3e10 and λ = 3.2e10 indicate the material properties of the
fault interface.

Given this fault definition we can create a mesh which fits within the fault dimensions. Each fault is meshed by
specifying the fault trace file in the format described above, and a fault element size. Currently all fault elements in
Virtual Quake are square though future versions will allow triangular elements. Furthermore, all elements of a single
fault are meshed at the same resolution. This means that if the meshing resolution is not a perfect multiple of the trace
length or depth at a given point, the meshed elements will not completely cover the trace.

Figure 2.2 shows this for an example fault trace consisting of 4 trace points, where the fault trace is represented by
a dashed line and the meshed elements represented by red segments. Figure 2.2a shows the meshed model on this fault
with elements that match the lengths between the trace points. Because the distance between trace points is exactly
a multiple of the element size, the meshed elements exactly cover the fault trace. Figure 2.2b shows the same fault
trace with smaller meshed elements. The first element follows the trace but the second element deviates in order to
fit the meshed element along the trace. In practice, this discrepancy is usually not a big issue because fault traces
are not significantly non-linear. Also, as elements become smaller relative to the distance between trace points this
discrepancy becomes smaller.

When creating a meshed element along a fault trace it is necessary to assign characteristics to the element such as
slip rate, aseismic slip, rake, dip, and Lamé parameters. These are determined by linear interpolation of the fault trace
values at the midpoint of the meshed element.

The use of linear interpolation for values between fault trace points also means that if the meshed elements are
larger than the distance between fault trace points and there is significant variation between trace point characteristics,
then this variation may be lost during the meshing process. In general it is recommended to use an element size smaller
than the smallest distance between fault trace points unless there are memory or computing constraints. In the event
that the meshing process skips a trace point because of overly large element size, a warning will be output during the
meshing process. Appropriate element size is further discussed in Section 4.3.2. The meshing program and related
parameters are described in Section 5.2.

Figure 2.3 shows the result of meshing the One Fault Example trace with different element resolutions. Figures
2.3a and 2.3b show the KML output of the program in Google Earth. Since the fault is defined to start at lati-
tude/longitude (0,0) it will appear in the middle of the Atlantic ocean. In output KML files the depth is reversed so
faults are visible above the surface. When performing simulations with realistic fault systems it is better to use actual
fault latitude/longitude rather than centering the faults on (0,0) in the traces to help visualize the simulation results.

20 CHAPTER 2. VQ COMPONENTS AND GOVERNING EQUATIONS

(a) Example 12km x 12km fault meshed at 6km resolu-
tion giving 2 x 2 = 4 total elements.

(b) Example 12km x 12km fault meshed at 4km element resolution giving 3 x 3 = 9
total elements.

Figure 2.3: A demonstration of meshing with different resolutions.

2.2 Element Stress Interactions
Unlike actual fault systems where the fault geometry is dynamic over long time periods, Virtual Quake simplifies
calculations assuming a geometrically static fault system. In this way Virtual Quake is intended to explore seismicity
in fault systems as they appear today rather than attempting to model their long term evolution. Back slip is used to
model the effects of stress buildup and release along elements approximating the fault plane. In a back slip model, the
equilibrium and initial positions of an element are the same, thus when an element fails it moves towards the original
position and the fault system geometry remains static.

2.2.1 Green’s Functions
Interactions between fault elements depend on the relative position and orientation of each element, and are calculated
using stress Green’s functions at the start of the simulation. The change in stress at a location x due to movement of
all elements is given by [7]:

σi j(x, t) =
∫

dx
′
kT kl

i j (x− x′)sl(x′, t) (2.1)

where sl(x′, t) is the three-dimensional slip density of element l, T kl
i j (x− x′) is the Green’s function tensor, and

l goes over all elements. In Virtual Quake this field is evaluated only at the center of elements and slip is assumed
to be uniform across the surface of an element and along the element rake angle defined in the model. Under these
conditions equation 2.1 simplifies to:

σ
A
i j(t) = ∑T AB

i j sB(t) (2.2)

where B runs over all elements. Finally, since Virtual Quake only uses the shear stress along the element rake
vector and normal stress perpendicular to the element, the tensor T AB

i j reduces to Ts for shear stresses and Tn for normal
stresses. This means the shear and normal stresses on an element in Virtual Quake are calculated as:

σ
A
s (t) = ∑T AB

s sB(t) (2.3)

σ
A
n (t) = ∑T AB

n sB(t) (2.4)

Thus, for a fault model with N elements Virtual Quake requires two N ×N element matrices to represent all
interactions. These are also referred to as the Green’s function matrices. The actual values for the matrix entries are
calculated using Okada’s half-space deformation equations [3]. Figure 2.7 on page 25 shows the stress field for a
single vertical strike-slip fault element.

2.3. RUPTURE MODEL 21

2.2.2 Event Transition Time
Virtual Quake uses a combined static-dynamic friction law to calculate element failures. This law is based on the
Coulomb failure function (CFF):

CFFA(t) = σ
A
s (t)−µ

A
s σ

A
n (t) (2.5)

where µA
s is the static coefficient of friction on element A based on model element strengths. During long term

stress accumulation, an element is defined to fail at time t f when CFFA(t f) = 0, which is referred to as static failure.
At this point the simulation changes to the rupture model described below.

Given the change in stress over time it is relatively straightforward to calculate the time to failure for an element.
Since effective long term slip rates during stress accumulation are assumed to be constant the change in CFF over time
is governed by the equation:

dCFFA

dt
= (σA

s −µ
A
s σ

A
n)+αT A

α (2.6)

where α represents the fraction of fault slip that is aseismic and T A
α = CFFAT AA

recurrence represents the instantaneous change
in CFF due to aseismic slip. Aseismic slip on an element transmits stress to other elements but not on the element
itself.

Knowing the relationship between slip and stress (equations 2.3 and 2.4), it is not necessary to evolve the system
time step by time step. Rather, the simulation time is advanced directly to the point at which the next element fails.
Equations 2.5 and 2.6 allow us to analytically solve for the time when the next element will fail.

2.3 Rupture Model
A rupture event in VQ is comprised of multiple sweeps. During each sweep one or more elements fail and one or
more elements slip. The sweeps continue as long as there are elements that fail - once no more elements fail the event
is complete.

Rupture propagation consists of two internal phases - rupture/slip caused by static or dynamic failure and slip
caused by the stress influence of other elements. The first phase involves elements rupturing and slipping due to static
stress failure (CFF = 0) or dynamic failure (Equation 2.7). The second phase involves ruptured elements continuing to
slip due to the changing stress influence of other elements. Each of these phases are described below.

During rupture propagation elements are either in a ruptured or non-ruptured state. Elements move from the non-
ruptured to ruptured state either by static or dynamic failure. Elements move from ruptured to non-ruptured only when
the event is complete. Static failure occurs when CFF ≥ 0. To better model rupture propagation dynamic failure is
also allowed during rupture events. Dynamic failure allows elements on the same fault and physically nearby to failed
elements to in turn fail at a lower stress level than the static failure criterion. This dynamic failure is based on the
increase in stress during the rupture event. Dynamic failure is caused when there is a significant change in CFF during
the event, satisfying:

CFFinit −CFFf inal

CFFinit
> η (2.7)

where η is a user defined dynamic triggering parameter either for the whole system or uniquely defined for each
element. This parameter approximates the stress intensity factor at the tip of a propagating rupture.

The initial element rupture during an event is always caused by static failure. During rupture propagation the first
element to fail slips back towards the equilibrium position. The amount of slip during the initial failure, ∆s, is related
to the stress drop defined for the element in the model, ∆σ , by [7]:

∆s =
1

KL
(∆σ −CFF). (2.8)

where KL is the element’s stiffness or self-stress defined as KL = T AA
s −µA

s T AA
n . Once an element has ruptured due

to static or dynamic failure it will no longer slip in the event due to these failures. However, ruptured elements may
slip further due to the movement of other elements.

22 CHAPTER 2. VQ COMPONENTS AND GOVERNING EQUATIONS

Event shown in detail below

C
FF

 [P
a]

−5×106

−4

−3

−2

−1

0

1×106

time [y]
400 450 500 550 600 650 700 750 800

(a) CFF vs. time for a series of stress buildup and rupture events.

C
FF

 [P
a]

−5×106

−4

−3

−2

−1

0

1

2×106

event sweeps
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

(b) CFF vs. sweeps for the event at t=593

Figure 2.4: Top: The CFF for each of the 48 elements comprising the Parkfield section of the San Andreas fault.
Drops in CFF correspond to stress release in events, with larger events consisting of many elements releasing stress.
Bottom: detail of rupture sweeps from the event at t=593. The trigger element is shown bold. Note that elements may
experience multiple failures, such as the trigger element failing during sweeps 0, 7, and 11.

During each rupture sweep, ruptured elements may slip further due to movement on other elements. The amount
of slip on a failed element is related to the movement of other elements through the Green’s function. A simplistic
approach to determining this is to calculate the slip on all other elements when a given element moves. However, this
is highly inefficient because the slip on a given element will in turn cause slip on all ruptured elements, which will
cause slip on all ruptured elements, and so on forever. Instead, the system is described using a set of linear equations
relating the slip of each element to the stress on all other elements in the final state of a given sweep.

This relationship between element slips during a sweep is determined for each ruptured element A as:

∆σA−CFFA = ∑(T AB
s −µ

B
s T AB

n)sB (2.9)

Since non-ruptured blocks do not change their slip, they are excluded from the system. This system is then solved
using Gaussian elimination. Once the slip is calculated for all ruptured elements, a new stress state for the entire system
is calculated using Equations 2.3 and 2.4. The rupture process is repeated by again checking the static/dynamic failure
until no more elements have failed.

Examples of stress accumulation and release over multiple phases of long term stress accumulation and rupture
events are shown in Figure 2.4. The first figure shows how a single element failure leads to a rupture spanning multiple
elements and how stress builds up and releases in cycles over time. The second figure shows how elements may fail
multiple times during different sweeps in an event, but do not accumulate additional stress after failing.

2.3.1 Stress Drops
The stress drops for the fault elements are computed via Wells and Coppersmith 1994 scaling relations along with
an analytical solution for the shear stress change per unit slip on a vertical rectangular fault. The simulation is pretty
sensitive to these values; large stress drops tend to produce larger earthquakes with longer periods between events,
while smaller stress drops produce many more small earthquakes. We provide a tuning parameter that globally adjusts
the stress drops, and you must specify this when using the mesher to generate your fault model file. The mesher
parameter is --stress drop factor=X.X where X.X is the value of the stress drop factor. The default value is 0.3
and it’s logarithmically scaled, and increasing this value by 0.1 multiplies the stress drops by 1.4, a 40% increase;
typical values range from 0.2-0.8.

We begin by using scaling relations to determine a different characteristic magnitude Mchar and a characteristic
slip ∆schar for each element in a fault based on the fault’s geometry from Leonard 2010 (improved upon Wells and
Coppersmith 1994) scaling relations

2.4. SIMULATION FLOW 23

Mchar = 4.0+ log10(A)+ stress drop factor (2.10)

where A is the surface area of the fault in km2. We then use the definition of moment magnitude to determine the
mean slip ∆schar

∆schar =
10

3
2 (M

char+6.0)

µA
(2.11)

where µ is the rigidity (shear modulus) of the elastic half space, and A here is the area of the fault in m2.
We then use this slip to determine the characteristic stress drop for each fault element

∆σ =− 2µ∆schar

(1−ν)πR

(
(1−ν)

L
W

+
W
L

)
. (2.12)

where ν is the Poisson ratio of the elastic half space, W is the down-dip width of the fault, L is the length of the
fault in the direction of slip, and

R =
√

L2 +W 2. (2.13)

2.3.2 ETAS Aftershock Model
We include an Epidemic Type Aftershock Model in Virtual Quake, specifically the BASS variant of the model de-
scribed in [9]. By setting the simulation parameter sim.bass.max generations = 1 you can turn on the aftershock
model. The aftershock model draws location from a prescribed Omori-type distribution, is mapped onto the closest
simulation element to the randomly drawn location, and the aftershock is processed as a regular simulated earthquake
and changes the local stress field accordingly. The aftershocks parameters are described in Section A.1.6.

2.4 Simulation Flow

Start
Partition Fault

Elements
Calculate

Stress Interactions
Calculate

System Stress
Find First Local
Element Failure

Find First
Global Failure

Process Local
Ruptured Elements

Global Stress
Communication

Recalculate
Local Stress

Find Local
Ruptured Elements

More Failures?

No

Yes

Communication

Computation

Initialization

Long Term

Rupture Propagation

Figure 2.5: Simulation flow of Virtual Quake.

Figure 2.5 shows the flow of simulation in Virtual Quake. The simulation begins by reading in a set of faults and
converting them to the internal data structures. When running a parallel simulation, these are partitioned over multiple
processes to ensure that each process is responsible for roughly an equal number of elements and that elements on the

24 CHAPTER 2. VQ COMPONENTS AND GOVERNING EQUATIONS

Parameter Description

L, W Fault length, down-dip width

δ Dip angle

C Fault plane depth

U1 Slip unit vector for strike-slip

U2 Slip unit vector for dip-slip

(U2>0 thrust; U2<0 normal)

U3 Slip unit vector for tensile

z Distance below surface

x/y Distance on surface

Figure 2.6: QuakeLib defines each fault element with parameters following Okada’s convention.

same processor are on the same fault or geographically close to each other. Next, each processor calculates the stress
Green’s functions on the local elements for all other elements in the model or loads precomputed Green’s functions
from a file. This comprises the initialization phase of the simulation shown in green in Figure 2.5.

The core of the simulation consists of repeated cycling between two phases until the end of the simulation time.
The first phase, shown in blue, calculates the long term stress buildup and time to first element failure in the system
based on Equation 2.5. In parallel simulations this time is calculated locally on each process then reduced to a global
time to failure.

The second phase is the rupture propagation phase, shown in purple in Figure 2.5. Virtual Quake uses a cellular
automata style approach to modeling rupture propagation. The rupture phase does not involve time domain solu-
tions to differential equations, but rather iterative calculations of stress and element failure to approximate a rupture
propagating through the fault system.

2.5 QuakeLib Tour
As mentioned in Section 1.3, the QuakeLib library provides tools and a Python interface to develop earthquake simula-
tions, read/write EqSim or VQ format files for geometry, friction, initial conditions and events, and calculate Okada’s
functions for arbitrary fault geometries. QuakeLib can be compiled and used independently from Virtual Quake. To
only compile QuakeLib, follow the install instructions in section 3.3.3 but from the quakelib subdirectory.

This chapter provides a brief visual tour of a few analytical utilities in QuakeLib and to illustrate its capacity as
the computational backbone for impressive and informative visualizations. The script that generates these plots is
vq/pyvq/pyvq.py, and a tutorial for generating plots like these is given in section 5.7.

2.5.1 Conventions
The QuakeLib functions act on single fault elements, and compute various dynamic quantities like the stress tensor,
surface deformation field, and gravity anomalies. These functions take fault parameter values following Okada’s
convention [3]. Figure 2.6 shows Okada’s convention for fault plane elements in an elastic halfspace z ≤ 0. The two
Lamé parameters (λ ,µ) that describe the fault element’s elasticity are also required. These parameters and their units
are described in detail in Appendix B.1.

2.5.2 Single Element Examples
The following example plots provide a brief window into QuakeLib’s analytical tools applied to single fault elements.

2.5.2.1 Stress Field

The stress field Green’s function is defined in quakelib/src/QuakeLibOkada.cpp as calc stress tensor. This function
computes the stress tensor at an arbitrary location in the elastic halfspace around the fault plane. Examples of the shear

2.5. QUAKELIB TOUR 25

(a) Front view (b) Top view

Figure 2.7: The shear stress field σxy (tan σxy > 0, blue σxy < 0) created by horizontal backslip, viewed from the front
and top of an element. The direction of backslip is indicated by the arrows.

stress field – equation 2.3 – computed by QuakeLib for a single vertical (δ = 90◦) strike slip fault element are shown
in Figure 2.7.

2.5.2.2 Displacement Field

The Green’s function is defined in quakelib/src/QuakeLibOkada.cpp as calc displacement vector. This function com-
putes the co-seismic displacement vector for an arbitrary location in the elastic halfspace around the fault plane. Figure
2.8 shows displacement fields for faults of different dips as calculated by this function. In this figure the parameters
for each fault element are L = 10km, W = 10km, slip = 5m, and the horizontal/vertical axes measure distance on the
surface of the halfspace in km. The fault plane depth values (C) are 10km for strike-slip, 11km for normal, and 6km
for thrust. The view is from above the fault plane looking straight down at the surface, and the thick black lines are
the projections of the buried fault plane onto the surface of the halfspace.

2.5.2.3 Gravity Field Anomalies

The gravity Green’s function is defined in quakelib/src/QuakeLibOkada.cpp as calc dg. This function computes the
gravity anomalies at an arbitrary surface location on the elastic halfspace around the fault plane. This is the total
gravity field anomaly Green’s functions, which includes contributions from subsurface density changes (dilatational)
and from surface displacement (free-air). Examples of the gravity anomaly field for single fault elements is given in
Figure 2.9. The fault parameters are the same as above.

2.5.3 Topologically Realistic Examples
The true power of QuakeLib lies in its ability to serve as the analytical backbone for visualizing the results of Virtual
Quake’s simulated seismic histories. The following example plots illustrate this point by showing QuakeLib’s tools
applied over many fault elements involved in a single simulated earthquake. The earthquakes visualized below come
from a simulation involving all major fault sections in California, the UCERF2 model described in section 2.1.

26 CHAPTER 2. VQ COMPONENTS AND GOVERNING EQUATIONS

Figure 2.8: Vertical displacement at the surface for buried fault elements, depth to top of each fault plane is 1km,
colorbar units are meters. Left: strike-slip δ = 90◦. Center: normal δ = 60◦. Right: thrust δ = 30◦.

Figure 2.9: Gravitational anomalies for the fault elements in Figure 2.8, colorbar units are µgal.

2.5. QUAKELIB TOUR 27

2.5.3.1 Displacement Field

Figure 2.10 shows the vertical displacement field on the surface as seen by an orbiting satellite for a very large (moment
magnitude 8.0) earthquake involving multiple sections of the San Andreas Fault.

2.5.3.2 Gravity Field Anomalies

Figure 2.11 shows co-seismic gravitational anomaly field on the surface, as measured by an orbiting satellite for the
same simulated earthquake as Figure 2.10.

28 CHAPTER 2. VQ COMPONENTS AND GOVERNING EQUATIONS

Figure 2.10: Simulated InSAR interferogram showing vertical displacements for a large earthquake (moment magni-
tude 7.79) involving multiple sections of the southern San Andreas Fault (thick white lines), as seen by an orbiting
satellite.

2.5. QUAKELIB TOUR 29

Figure 2.11: Simulated surface gravity anomalies for the same simulated earthquake as in Figure 2.10.

30 CHAPTER 2. VQ COMPONENTS AND GOVERNING EQUATIONS

Chapter 3

Getting Started and Installation

3.1 Introduction
Virtual Quake is available in two forms: as a source package that users can compile on their own, and as a Docker
image which is pre-compiled within a controlled container environment. Users interested in making modifications to
the source of VQ should compile from source, while the Docker image is more likely to run without issue on a wide
variety of systems, with no system requirements other than Docker itself. For most users, the Docker image is the
recommended usage method.

The following sections will lead you through the installation process.

3.2 Getting Help
For help, send e-mail to the Short Term Crustal Dynamics Mailing List (cig-short@geodynamics.org). You
can subscribe to the Mailing List and view archived discussion at the Geodynamics Mail Lists web page (http:
//geodynamics.org/cig/about/mailing-lists/). For bugs found in the manual or source code, or to make
feature requests please use the Github issue tracker at (https://github.com/geodynamics/vq/issues).

3.3 Compiling from Source

3.3.1 System Requirements
Virtual Quake and QuakeLib have been tested on Linux, Mac OS X and several other UNIX based platforms. Virtual
Quake has also been successfully run in parallel on several XSEDE systems and commodity cluster systems.

Installation of Virtual Quake requires a C++ compiler. Other requirements are the headers and development li-
braries for

• OpenMPI

• HDF5 (OpenMPI version)

• SWIG

• CMake

You must also have Python 2.7 or greater installed, with h5py.

3.3.2 Obtaining Source
To obtain the latest official release of Virtual Quake, go to the Geodynamics software package web page (http:
//geodynamics.org/cig/software/vq), download the source archive and unpack it using the tar command:

31

cig-short@geodynamics.org
http://geodynamics.org/cig/about/mailing-lists/
http://geodynamics.org/cig/about/mailing-lists/
https://github.com/geodynamics/vq/issues
http://geodynamics.org/cig/software/vq
http://geodynamics.org/cig/software/vq

32 CHAPTER 3. GETTING STARTED AND INSTALLATION

$ tar xzf vq-1.1.0.tar.gz

To get the latest development version of Virtual Quake, use git to make a copy of the repository:

$ git clone --recursive https://github.com/geodynamics/vq

3.3.3 Installation Procedure
After unpacking the source, use the following procedure to install the Virtual Quake executable as well as the QuakeLib
library and the mesher program:

1. Navigate to the directory containing the Virtual Quake source.

$ cd vq

2. Make the build directory and navigate to it.

$ mkdir build

$ cd build

3. Use CMake to configure before compiling VQ.

$ cmake ..

4. Use make to build QuakeLib and the VQ binaries.

$ make

5. The final step is required only if the user intends to use the quakelib python module
$ sudo make install

If you are content to run Virtual Quake from the build directory, then you are done. Upon successful completion, the
make command creates two executables “mesher” and “vq” in the /build/src/ subdirectory. “vq” is the binary you
will use to run a Virtual Quake simulation, and the mesher program can create fault models as described in Section
5.2.

3.3.3.1 Mac OS X

If you have a third party installation of python (e.g. from Homebrew or MacPorts) Virtual Quake will build and install,
but the Python QuakeLib module may not work (failure will generally manifest itself as a segmentation fault). This is
because CMake may build against a different installation of Python than it runs Python scripts with. To fix this you
can specify the Python installation to use when compiling QuakeLib with:

cmake -DPYTHON_EXECUTABLE=/.../python \

-DPYTHON_LIBRARY=/.../libpython2.7.dylib \

-DPYTHON_INCLUDE_DIR=/.../include/python2.7/ ..

Be sure to change the paths to whatever is appropriate on your system.

3.3.3.2 Install Locations

QuakeLib libraries will be installed in standard library directories based on your system configuration. CMake will
generate a file named install manifest.txt in the build directory detailing the locations of installed files. The
Virtual Quake binary is at build/src/vq.

3.4. DOCKER IMAGE 33

3.3.3.3 Selecting a Compiler — Multiprocessing

Depending on the machine used to run VQ, you may need to change which compiler CMake uses to compile VQ. For
example, if the user wants to compile VQ with gcc 3.3, execute cmake as shown below.

$ CC=gcc-3.3 CXX=g++-3.3 cmake ..

$ make

To compile Virtual Quake and deploy it across multiple processors using MPI, execute cmake instead as:

$ CC=mpicc CXX=mpicxx cmake ..

$ make

3.3.3.4 HDFView

HDFView is a visual tool written in Java for browsing and editing HDF5 files. While it is not necessary for the normal
operation of Virtual Quake, you may find it useful for accessing Virtual Quake data in HDF5 files. You may download
it from the HDFView home page (hdf.ncsa.uiuc.edu/hdf-java-html/hdfview).

3.4 Docker Image

3.4.1 Initial Setup
All instructions for Virtual Quake Docker image setup can be found at the VQ Docker Hub, (https://hub.docker.
com/r/geodynamics/virtualquake/).

The only requirement of the host system for running the Docker image of Virtual Quake is Docker itself, which
can be downloaded from (https://www.docker.com/products/docker).

Once the Docker client is running on your machine, download the Virtual Quake image with

$ docker pull geodynamics/virtualquake:3.1.1

3.4.2 Running a Container
First, determine a directory on your computer (The ”host” computer) in which to store all simulation files. These will
include any fault model files, simulation outputs, and PyVQ plots.

To allow the VQ container to access these files, include the full path of the chosen directory in the indicated spot in
the docker run command. Since Docker works slightly differently on Mac and Linux, use the appropriate command
for your machine:

• For Linux:

$ docker run --rm -v <full path to host directory>:/home/virtualquake/external_volume

-e HOST_UID=$(id -u) -e HOST_GID=$(id -g) -it geodynamics/virtualquake:3.1.1

• For Mac:

$ docker run --rm -v <full path to host directory>:/home/virtualquake/external_volume

-it geodynamics/virtualquake:3.1.1

3.4.3 Running Simulations
After executing the docker run command, you’ll be dropped into a terminal running inside the container, in a direc-
tory with access to all the files in the host directory you chose. The VQ fault mesher, simulator, and PyVQ analysis
tools are located in the ~/vq-3.1.0 directory inside the container, and can be accessed and used normally while in the
container console. Upon exiting the container terminal, the container will shut down, but all files stored and modified
in the host directory will remain.

hdf.ncsa.uiuc.edu/hdf-java-html/hdfview
https://hub.docker.com/r/geodynamics/virtualquake/
https://hub.docker.com/r/geodynamics/virtualquake/
https://www.docker.com/products/docker

34 CHAPTER 3. GETTING STARTED AND INSTALLATION

Chapter 4

Running VQ

4.1 Introduction
Now that installation and testing is finished, we will get into the specifics of building a fault model, compiling Virtual
Quake, and finally running a custom simulation. The following chapter serves to illustrate the main features of a
Virtual Quake simulation, and will prepare the user for the examples in Chapter 4.

4.2 Basic Usage and Tests
The main procedure for running a VQ simulation is to create the fault model (see Sections 5.3 and 5.4 for examples),
compile Virtual Quake following Section 3.3.3 to generate the executable, place the executable in the same folder as
the parameter files, and finally execute the program.

4.2.1 CMake Tests
If you installed Virtual Quake according to Section 3.3.3, then you successfully compiled the QuakeLib library and the
VQ and mesher executables. CMake is used to configure the simulation program, and also provides a test framework
to ensure all parts of VQ are working as expected. To run the suite of tests use the following commands.

$ cd build/

$ make test

Running tests...

Test project /.../build

Start 1: CondUnitTest

1/230 Test #1: CondUnitTest Passed 0.08 sec

Start 2: FricUnitTest

2/230 Test #2: FricUnitTest Passed 0.09 sec

Start 3: GreenUnitTest

3/230 Test #3: GreenUnitTest Passed 0.09 sec

Start 4: OctreeTest

4/230 Test #4: OctreeTest Passed 0.06 sec

Start 5: UtilUnitTest

5/230 Test #5: UtilUnitTest Passed 0.15 sec

Start 6: EventUnitTest

6/230 Test #6: EventUnitTest Passed 0.05 sec

Start 7: GeomUnitTest

7/230 Test #7: GeomUnitTest Passed 0.05 sec

Start 8: MetadataUnitTest

8/230 Test #8: MetadataUnitTest Passed 0.04 sec

Start 9: RectBoundTest

35

36 CHAPTER 4. RUNNING VQ

9/230 Test #9: RectBoundTest Passed 0.04 sec

Start 10: mesh_P1_none_12000

10/230 Test #10: mesh_P1_none_12000 Passed 0.01 sec

Start 11: param_P1_none_12000

11/230 Test #11: param_P1_none_12000 Passed 0.01 sec

Start 12: run_P1_none_12000

12/230 Test #12: run_P1_none_12000 Passed 0.05 sec

Start 13: test_consistent_P1_none_12000

13/230 Test #13: test_consistent_P1_none_12000 Passed 0.32 sec

Start 14: test_slip_P1_none_12000

14/230 Test #14: test_slip_P1_none_12000 Passed 0.33 sec

Start 15: test_interevent_P1_none_12000

15/230 Test #15: test_interevent_P1_none_12000 Passed 0.31 sec

...

Start 230: test_two_consistent_taper_renorm_3000

230/230 Test #230: test_two_consistent_taper_renorm_3000 Passed 0.72 sec

100% tests passed, 0 tests failed out of 230

Total Test time (real) = 54.90 sec

The final lines of the output summarize the results from the unit tests and test simulations.

4.2.2 Explicit Test Simulation
If you would rather explicitly follow the steps of building your own fault model, generating the parameter files and
running the simulation, then you should consult the tutorial in Section 5.3.

4.3 Advanced Usage
Since the simulation physics and event model will work with any arbitrarily complex fault model, advanced users can
make Virtual Quake generate simulated seismic histories for any fault system. The only requirement for using VQ to
simulate dynamics on an arbitrary fault network is to prepare the input files. Chapter 4 contains examples that illustrate
this procedure of defining fault geometry and properties.

4.3.1 Tuning Parameters
Fault simulations must initially be tuned to correctly simulate actual earthquakes. The primary tuning parameters in
Virtual Quake are the dynamic triggering factor η , defined in Section 2.3, and the stress drop factor defined in Section
2.3.1. The dynamic triggering factor is used to encourage rupture propagation during a simulated earthquake. This
parameter acts to tune the rupture and slipping properties of faults without requiring field measurements of each fault’s
physical properties, a result of VQ’s abstraction and generality. Currently, this parameter is set globally for the fault
model. For parameter usage, see Section A.1.3.

Figure 4.1 shows the effect of a changing dynamic trigger factor η on the frequency-magnitude relation for simu-
lations of the UCERF3 fault model with a fixed stress drop factor. Figure 4.2 shows the effect of a changing stress drop
factor ∆M on the frequency-magnitude relation for simulations of the UCERF3 fault model with a dynamic trigger
factor.

4.3.2 Simulation Performance and Scaling
Virtual Quake is designed to support parallel computing with OpenMP or MPI and this section gives some quantita-
tive results of deploying VQ in multiprocessing environments. The key factors determining the scope of the output
and the simulation performance are the number and size of the fault elements in the fault model. The size of the
meshed elements will affect both simulation accuracy and computational resource requirements. The appropriate size

4.3. ADVANCED USAGE 37

Figure 4.1: With the stress drop factor set to 0.7, this is the effect of tuning the dynamic trigger factor η on the
frequency-magnitude distribution. These are 10,000 year simulations of the UCERF3 fault model compared to ob-
served California earthquake rates and 95% confidence bounds in red.

Figure 4.2: With the dynamic trigger factor set to η = 0.5, this is the effect of tuning the stress drop factor ∆M on
the frequency-magnitude distribution. These are 10,000 year simulations of the UCERF3 fault model compared to
observed California earthquake rates and 95% confidence bounds in red.

38 CHAPTER 4. RUNNING VQ

Operation Minimum Maximum
Addition 3,622 10,804

Multiplication 8,708 25,566
Square Root 260 780

Branch 1,148 3,924
Other 571 1,923
Total 14,309 42,997

(a) Operations required to calculate a single element-element stress in-
teraction.

M
in

im
um

 M
ag

ni
tu

de
 (M

m
in

)

2

4

6

Meshed Element Size (meters)
10100100010000

Min. Magnitude (μ=3.2×1010, Δsmin=0.3 meters)

(b) Element size versus minimum event magnitude.

Figure 4.3: Number of elements determines computational cost - this will vary depending on the relative rake and dip.
Element size governs simulated earthquake magnitude range.

Desktop

Cluster

Supercomputer

3km
2km

1km

500m

250m

100m

R
eq

ui
re

d
M

em
or

y
(G

B
)

1

10

102

103

104

105

106

107

Number of Elements
104 105 106 107

(a) Element size determines computational regime.

θ = 0.5
θ = 10-2

No BH
M

em
or

y
R

eq
 (G

B)

1GB

1TB

1PB

Number of Elements
105 106 107

Memory Requirements

(b) Number of elements vs. memory requirements with approximations.

Figure 4.4: Tradeoffs in element size and resource requirements.

of fault elements for a given simulation depends on the desired minimum earthquake magnitude and the available
computational resources.

4.3.3 Element Size and Minimum Magnitude
The relationship between element size and minimum magnitude is given by:

Mmin =
2
3

log10(µsL2)−6.0 (4.1)

where µ is the Lamé parameter, s is the minimum slip distance, and L is the element size in meters. The minimum
slip distance, s, will depend on the orientation of the element, the total fault size, and the interaction with other
elements in the system, but will generally range from approximately 0.1 to 1.0 meters. For example, for the 12km x
12km fault described in Section 2.1.3 the minimum slip distance is 0.3 meters. Figure 4.3b shows the relationship in
VQ between element size and minimum earthquake magnitude.

The number of elements in a model will also affect the required memory. For non-approximated fault interaction
in a model with N elements, the memory requirements are:

Memory = 16N2bytes (4.2)

Chapter 5

Tutorials

5.1 Overview
These tutorials are meant to serve as a guide to some of the types of simulations VQ can perform. These cookbook
examples are distributed with the package under the examples directory. Each tutorial is a self-contained lesson in
how to use Virtual Quake. The tutorials increase in degree of complexity from one to the next. In the last section, we
demonstrate how to construct the entire California fault system for large scale simulations.

5.1.1 Prerequisites
Before you begin any of the tutorials, you will need to install Virtual Quake following the instructions in Chapter 3 on
page 31. If you do not wish to create your own mesh, the meshes are also provided as part of the tutorial.

5.2 Building a Fault Model
VQ uses a mesher program for fault model file manipulation. The mesher imports one or more trace files, manip-
ulates them based on user arguments and exports one or more files to be used as input files for a VQ simulation.
After following install instructions in Section 3.3.3, the mesher program is compiled to an executable located at
build/src/mesher. This program is called by the shell scripts in the examples below to generate a fault model for
VQ. See Section C on page 71 for more information on the options for the mesher program.

The next sections give examples and describe the model files that the mesher creates. For both files, each com-
mented line describes the parameter in the corresponding column of the uncommented line immediately following the
comments. See Section A on page 65 and Section B.1 on page 69 for more information on the input fault model files
and parameters.

5.2.1 Trace File
The basic outline for a fault trace file is given in Section 2.1 on page 17. The trace file specifies the fault geometry and
physical parameters. An example is printed below.

fault_id: ID number of the parent fault of this section

sec_id: ID number of this section

num_points: Number of trace points comprising this section

section_name: Name of the section

0 0 2 One_Fault_Example

latitude: Latitude of trace point

longitude: Longitude of trace point

altitude: Altitude of trace point (meters)

depth_along_dip: Depth along dip (meters)

slip_rate: Slip rate at trace point (centimeters/year)

39

40 CHAPTER 5. TUTORIALS

aseismic: Fraction of slip that is aseismic at point

rake: Fault rake at trace point (degrees)

dip: Fault dip at trace point (degrees)

lame_mu: Lame’s mu parameter at trace point (Pascals)

lame_lambda: Lame’s lambda parameter at trace point (Pascals)

0 0 0 12000 1 0 180 90 3e+10 3.2e+10

0 0.1078 0 12000 1 0 180 90 3e+10 3.2e+10

5.2.2 Example Traces
The examples/fault traces/ folder contains the fault traces used in the examples below. In addition, we provide
trace files for all of California’s major fault sections in the subfolder fault traces/ca traces/.

5.2.3 Friction Parameters
Virtual Quake uses established scaling laws to determine certain model parameters and initial conditions. Past sim-
ulations required that the user specify the stress parameters on each element then run the simulation based on this.
However, the parameters that produce realistic results depend strongly on the model fault geometry, size of fault ele-
ments and friction properties. Furthermore these parameters can be easily modified to produce arbitrary fault behavior.
Rather than require the user to specify these parameters, they are internally calculated by VQ to match established
physical laws and empirical observations.

5.2.4 Simulation Parameter File
The main simulation input file is the parameter file. This file tells the simulator where the fault model files are located,
sets various simulation variables, and specifies the output of the simulation. An example parameter file template is
located in examples/. For all possible simulation parameters, see Appendix A.

5.2.5 Producing a Fault Model
The first step is to use setup mesh.sh to generate the fault trace file, and the second step is to edit the simulation
parameter file “params.d”. This method is illustrated in the tutorials in the following sections.

5.2.6 Using the Mesher
The mesher is called on the command line. See Appendix C for all supported runtime options.

./mesher [options]

-s FILE, --print_statistics=FILE

Print statistics regarding final model to the specified file.

-m, --merge_duplicate_verts

Merge duplicate vertices after importing files.

-d, --delete_unused

Delete unused vertices after importing files.

-t METHOD, --taper_trace_method=METHOD

Specify the how to taper the imported faults when meshing.

FILE IMPORT

-i FILE, --import_file=FILE

Specify a model file to import and merge. Must have a paired import_file_type.

-j TYPE, --import_file_type=TYPE

Specify a model file type for importing. Must have a paired import_file.

-l SIZE, --import_trace_element_size=SIZE

Specify the element size (in meters) to use for trace file meshing. Must have a paired trace type file import.

5.2. BUILDING A FAULT MODEL 41

-C FILE, --import_eqsim_condition=FILE

Specify an EQSim condition file to import for the model.

-F FILE, --import_eqsim_friction=FILE

Specify an EQSim friction file to import for the model.

-G FILE, --import_eqsim_geometry=FILE

Specify an EQSim geometry file to import for the model.

FILE EXPORT

-e FILE, --export_file=FILE

Specify a file to export the completed model to. Must have a paired export_file_type.

-f TYPE, --export_file_type=TYPE

Specify a file type to export the completed model. Must have a paired export_file.

-D FILE, --export_eqsim_condition=FILE

Specify an EQSim condition file to export for the model.

-R FILE, --export_eqsim_friction=FILE

Specify an EQSim friction file to export for the model.

-M FILE, --export_eqsim_geometry=FILE

Specify an EQSim geometry file to export for the model.

5.2.6.1 Taper Functionality

Specifying any tapering method other than none will result in element slip rates being reduced near the edges of
faults. Slip rates are tapered both vertically, as the square root of the element’s distance from the bottom of the fault
normalized by the total fault depth, and horizontally for those elements within twelve kilometers of the ends of faults,
as the square root of the element’s distance from the fault end normalized by twelve kilometers. The taper renorm

tapering method will perform this tapering with an additional slip rate normalization factor to maintain total moment
rate over the fault.

5.2.7 Parameter File
Copy the example params.d file into the same folder as the mesher generated model. Edit the parameter file so the
simulation parameters are set correctly for the current run.

5.2.8 Bounding the Greens Functions
In some cases, the mesher produces elements that have some small percentage of overlap. This overlap can cause the
Greens functions (interaction coefficients) to take on extreme/non-physical values. If your simulation is producing
anomalous earthquakes, or behaving oddly, try the following.

After using a test simulation to save your Greens functions to a file (e.g. “greens values.h5”), you can use the
script in vq/PyVQ/pyvq/betas/ called greens.py. Open a python environment from this directory, or in a python script
execute the following to fit a Gaussian profile to the Greens functions, plot the distribution of values, and return the
1 standard deviation bounds. The values shown in example output below are the 1 standard deviation bounds (max,
min) for the Greens functions. Issue the plt.show() command to reveal the plot of the Greens functions and the best fit
Gaussian, as shown in Figure 5.1.

$ python

Python 2.7.9 (default, Dec 13 2014, 15:13:49)

[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.56)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> from matplotlib import pyplot as plt

>>> import greens

>>> greens.plot_greens_hists(greens_fname="path/to/greens_values.h5", shear_normal="shear")

[....some output omitted...]

Greens range for 1 sigma ... x=[3661623.85 -831572.04] ...

>>> plt.show()

42 CHAPTER 5. TUTORIALS

Figure 5.1: Example histogram of shear stress Greens function values with best fit Gaussian and bounds.

>>> greens.plot_greens_hists(greens_fname="path/to/greens_values.h5", shear_normal="normal")

[....some output omitted...]

Greens range for 1 sigma ... x=[61623.85 -31572.04] ...

>>> plt.show()

To implement these bounds for the shear stress Greens functions, in your simulation parameter file set the
sim.greens.shear offdiag max equal the the 1 standard deviation maximum value given by greens.py (3661623.85
in the example above), and set sim.greens.shear offdiag min equal the the 1 standard deviation minimum value
(-831572.04 in the example above). You can do the same for the normal stress bounds, setting sim.greens.normal offdiag max

and sim.greens.normal offdiag min. All parameters are given in Appendix A.1.4.
You can also use the simulation parameter “sim.greens.offdiag multiplier” to reduce the interactions in the Green’s

function matrices. The value can range from 0 to 1.

5.2.9 Periodically Saving the Simulation State
The Virtual Quake simulation can crash mid-simulation for a number of reasons, and while we do not anticipate your
simulation to crash, it does happen. To prevent the loss of simulation data, and to avoid the situation of a simulation
crashing 50,000 years in, leaving you to start your large simulation from the beginning, we have the ability to output
the state of simulation.

In order to save the simulation state to an HDF5 file, for example (you can also save to text file), after every 10,000
earthquakes, simply add the following to your simulation parameter file:

sim.file.output_stress = file_to_save_sim_state.h5

sim.file.output_stress_type = hdf5

sim.file.output_stress_num_events = 10000

If you want to start a simulation after the last checkpoint was written for the previous simulation, simply run a new
simulation with the following parameters:

5.3. SINGLE ELEMENT TUTORIAL 43

sim.file.input_stress = file_to_save_sim_state.h5

sim.file.input_stress_type = hdf5

Lets say this process gives you two simulation files: one initial simulation that saved it’s state before failing (let’s
call it initial simulation.h5), and a second simulation file that continued the initial simulation by loading the saved state
of the initial simulation (continued simulation.h5). We can combine the events from these two simulation files with
PyVQ and plot the results of the complete simulation by running the following example (to plot the magnitude-area
distribution):

$ python path/to/vq/pyvq/pyvq.py --event_file initial_simulation.h5 --combine_file

continued_simulation.h5 --stress_file file_to_save_sim_state.h5

--plot_mag_rupt_area

More PyVQ examples can be found in Section 5.7, and a detailed list of stress simulation parameters (including
text file I/O) can be found in Section A.1.5.

5.3 Single Element Tutorial

5.3.1 Overview
This tutorial is the simplest possible implementation of Virtual Quake. In this tutorial we will build the trace file for
a single vertical strike-slip fault element, then use this to build a fault model with the mesher program and run this
simulation for 10,000 years.

5.3.2 Creating Input Files
We are going to create a new fault trace file for this single element. The only data we need for this are the latitude and
longitude of the endpoints of our element. For this example we will use the following coordinates (37.83,-122.4797)
and (37.803,-122.4765). These endpoints give a 3km fault element that runs parallel to and directly under the Golden
Gate Bridge in San Francisco. The trace file is printed below and the fault element is shown above ground in Figure
5.2.

fault_id: ID number of the parent fault of this section

sec_id: ID number of this section

num_points: Number of trace points comprising this section

section_name: Name of the section

0 0 2 One_Fault_GG_Example

latitude: Latitude of trace point

longitude: Longitude of trace point

altitude: Altitude of trace point (meters)

depth_along_dip: Depth along dip (meters)

slip_rate: Slip rate at trace point (centimeters/year)

aseismic: Fraction of slip that is aseismic at point

rake: Fault rake at trace point (degrees)

dip: Fault dip at trace point (degrees)

lame_mu: Lame’s mu parameter at trace point (Pascals)

lame_lambda: Lame’s lambda parameter at trace point (Pascals)

37.83 -122.4797 0 3000 1 0 180 90 3e+10 3.2e+10

37.803 -122.4765 0 3000 1 0 180 90 3e+10 3.2e+10

To create the input files, we use the mesher program as follows (arguments explained in Section 5.2).

$ cd examples

$ mkdir golden_gate

$ cd golden_gate

44 CHAPTER 5. TUTORIALS

Figure 5.2: Single 3km x 3km fault element running under the Golden Gate Bridge in San Francisco, shown above
ground. This plot was generated by Google Earth from the mesher generated KML file.

$../../build/src/mesher \

--import_file=../fault_traces/golden_gate.txt \

--import_file_type=trace \

--import_trace_element_size=3000 \

--taper_fault_method=none \

--export_file=golden_gate_3000.txt \

--export_file_type=text \

--export_file=golden_gate_3000.kml \

--export_file_type=kml \

--print_statistics=statistics_3000.txt

This generates several output files as listed by the command line output shown below.

*** Summary of edits ***

File import ../fault_traces/golden_gate.txt with type trace... done.

File export golden_gate_3000.txt with type text... done.

File export golden_gate_3000.kml with type kml... done.

Print statistics to statistics_3000.txt

Trace values for the faults in California are taken from Ward’s ALLCAL2 model [10], more information is available
at http://scec.usc.edu/research/eqsims/documentation.html.

5.3.3 Edit Parameter File
The parameter file must be in the same directory (examples/golden gate/). Make sure the parameter file params.d
is as shown below:

sim.version = 2.0

sim.time.end_year = 10000

http://scec.usc.edu/research/eqsims/documentation.html

5.4. TUTORIAL USING MULTIPLE ELEMENTS 45

sim.greens.method = standard

sim.greens.use_normal = false

sim.friction.dynamic = 0.5

sim.file.input = golden_gate_3000.txt

sim.file.input_type = text

sim.file.output_event = events_3000.txt

sim.file.output_sweep = sweeps_3000.txt

sim.file.output_event_type = text

5.3.4 Running VQ
With the generated fault mesh and and parameter file we can run the simulation. To do so, call the vq executable
(single processor) and pass the parameter file as a command line argument:

$../../build/src/vq ./params.d

You should see output similar to:

*** MPI CPU count : 1

Initializing blocks.

To gracefully quit, create the file quit_vq in the run directory.

Calculating Greens function with the standard Okada class.

Greens function took 0.00187707 seconds.

Greens shear matrix takes 128 bytes.

Greens normal matrix takes 128 bytes.

To access the event output file during the simulation, pause

by creating the file pause_vq. Delete the file to resume.

Writing events in format text to file events_3000.txt

Plugin requested simulation end: Block stress calculation

Timer Name AvgCounts Min Max Mean StdDev

0 Total Time 1 0.053 0.053 0.053 0.000

1 Init and Cleanup 2 0.010 0.010 0.010 0.000

2 Comm Barrier 2 0.000 0.000 0.000 0.000

3 Block stress calculation 748 0.003 0.003 0.003 0.000

4 Propagate event ruptures 748 0.019 0.019 0.019 0.000

5 Data Writer 748 0.018 0.018 0.018 0.000

5.3.5 Results
The output data will be in events 3000.txt and sweeps 3000.txt. For more details about the file contents, see
Appendix D. The results are not very exciting, there is one earthquake that occurs regularly due to constant backslip.
But this illustrates setting up a Virtual Quake simulation start to finish.

5.4 Tutorial Using Multiple Elements

5.4.1 Overview
Now we will repeat the single vertical strike-slip fault tutorial from the previous section, but we will break up the fault
into multiple elements.

5.4.2 Creating Input Files
For this tutorial, changing the element size to 1000 meters instead of 3000 meters will divide the fault into a 3 by 3 set
of elements. The command to do so is shown below:

46 CHAPTER 5. TUTORIALS

$ cd examples/golden_gate

$../../build/src/mesher \

--import_file=../fault_traces/golden_gate.txt \

--import_file_type=trace \

--import_trace_element_size=1000 \

--taper_fault_method=none \

--export_file=golden_gate_1000.txt \

--export_file_type=text \

--export_file=golden_gate_1000.kml \

--export_file_type=kml \

--print_statistics=statistics_1000.txt

Which should result in the following output:

*** Summary of edits ***

File import ../fault_traces/golden_gate.txt with type trace... done.

File export golden_gate_1000.txt with type text... done.

File export golden_gate_1000.kml with type kml... done.

Print statistics to statistics_1000.txt

We will copy the previous params.d file to params multiple.d and edit it to match the new file names, as
shown below:

sim.version = 2.0

sim.time.end_year = 10000

sim.greens.method = standard

sim.greens.use_normal = false

sim.friction.dynamic = 0.5

sim.file.input = golden_gate_3000.txt

sim.file.input_type = text

sim.file.output_event = events_3000.txt

sim.file.output_sweep = sweeps_3000.txt

sim.file.output_event_type = text

5.4.3 Running VQ
Again we run the simulation by calling the vq executable:

$../../build/src/vq ./params_multiple.d

Output should be similar to the previous simulation:

*** MPI CPU count : 1

Initializing blocks.

To gracefully quit, create the file quit_vq in the run directory.

Calculating Greens function with the standard Okada class.

Greens function took 0.00388789 seconds.

Greens shear matrix takes 1.125 kilobytes.

Greens normal matrix takes 1.125 kilobytes.

To access the event output file during the simulation, pause

by creating the file pause_vq. Delete the file to resume.

Writing events in format text to file events_1000.txt

Plugin requested simulation end: Block stress calculation

Timer Name AvgCounts Min Max Mean StdDev

0 Total Time 1 0.228 0.228 0.228 0.000

1 Init and Cleanup 2 0.005 0.005 0.005 0.000

5.5. MULTIPLE FAULT TRACE POINTS 47

Figure 5.3: The same 3km x 3km fault section from figure 5.2 but meshed into 1km x 1km elements. This plot was
generated by Google Earth from the mesher output KML file.

2 Comm Barrier 2 0.000 0.000 0.000 0.000

3 Block stress calculation 748 0.009 0.009 0.009 0.000

4 Propagate event ruptures 748 0.124 0.124 0.124 0.000

5 Data Writer 748 0.089 0.089 0.089 0.000

Note the Greens shear and normal matrices now require 1.125 KB of memory instead of 128 bytes of memory as
in the previous simulation. This is because the simulation now has 9 elements and a correspondingly larger Green’s
matrix.

5.4.4 Results
The output data is stored in events 1000.txt and sweeps 1000.txt. For more details about the file contents, see
Appendix D.

5.5 Multiple Fault Trace Points

5.5.1 Overview
This tutorial explores a VQ simulation involving a fault section defined by three trace points — each segment 15km
long and 12km deep meshed into 3km by 3km elements. We will also use larger fault elements than the previous
example, which raises the lower bound for magnitudes in the output data set. Furthermore, we now will be simulating
the interaction between 40 elements so the computational resource requirements grow as well (see Section 4.3.2 for a
detailed discussion).

5.5.2 Input Files
We will use another trace file that is provided with the VQ package. This trace file specifies two neighboring vertical
strike slip fault segments that intersect at the Earth and Physical Sciences building on campus at the University of

48 CHAPTER 5. TUTORIALS

California, Davis, shown in Figure 5.4. We generate the mesh with the following commands.

$ cd examples

$ mkdir two_fault

$ cd two_fault

$../../build/src/mesher \

--import_file=../fault_traces/multiple_fault_trace.txt \

--import_file_type=trace \

--import_trace_element_size=3000 \

--taper_fault_method=none \

--export_file=two_fault_3000.txt \

--export_file_type=text \

--export_file=two_fault_3000.kml \

--export_file_type=kml \

--print_statistics=statistics_3000.txt

Which should output the following.

*** Summary of edits ***

File import ../fault_traces/multiple_fault_trace.txt with type trace... done.

Computing stress drops with stress_drop_factor=0.3

File export two_fault_3000.txt with type text... done.

File export two_fault_3000.kml with type kml... done.

Print statistics to statistics_3000.txt

Next, create the params.d file as below:

sim.version = 2.0

sim.time.end_year = 10000

sim.greens.method = standard

sim.greens.use_normal = false

sim.friction.dynamic = 0.5

sim.file.input = two_fault_3000.txt

sim.file.input_type = text

sim.file.output_event = events_3000.txt

sim.file.output_sweep = sweeps_3000.txt

sim.file.output_event_type = text

5.5.3 Running VQ
Again we run the simulation on a single processor by simply executing the vq executable:

$../../build/src/vq ./params.d

To instead run VQ in parallel on 2 or more processors/cores with MPI, use:

$ mpirun -np 2 ../../build/src/vq ./params.d

The output from an MPI simulation should be identical that from a single processor simulation.

5.5.4 Results
The output data is stored in events 3000.txt and sweeps 3000.txt. For more details about the file contents, see
Appendix D.

5.6. BUILDING THE FULL CALIFORNIA FAULT MODEL 49

Figure 5.4: Two fault sections that meet at the UC Davis campus. The fault sections are 15km x 12km and meshed
into 3km x 3km elements. This plot was generated by Google Earth from the mesher output KML file.

5.6 Building the full California Fault Model

5.6.1 Overview
In the examples folder we also provide all the major fault traces in California and an executable script that can use
them to build a full fault model. To build the full California fault model, execute the following commands to mesh the
model into 3km elements:

$ cd examples/ca_model/

$./gen_ca_model.sh 3000

Next, create an appropriate parameter file and run VQ as shown in the previous sections. Note that the full CA
simulation requires a fair amount of memory and may take several hours to finish. Progress will be reported during
the simulation if the sim.system.progress period parameter is set to a nonzero value (unit is seconds).

5.7 Virtual Quake Data Analysis Tutorial (PyVQ)

5.7.1 Overview
Section 2.5 showed plots of gravity changes and an InSAR interferogram for a selected simulated earthquake. These
plots that analyze simulation data utilize the python interface to the QuakeLib library, specifically a python module
named quakelib that is generated during the final step of compiling Virtual Quake (when using the command “sudo
make install”, see section 3.3.3). In the following sections we describe how to make plots with Virtual Quake data
using the pyvq script in the pyvq directory.

The set of simulation data analysis plotting scripts are located in the pyvq folder, and accessing by calling the
python script pyvq.py with various command line arguments. The functionality is briefly explained in the README PYVQ
file and discussed in further detail here. The full list of possible PyVQ parameters is given in Section 5.8.

50 CHAPTER 5. TUTORIALS

Figure 5.5: Example frequency-magnitude distribution.

5.7.2 Simulation Statistics Plots
To generate a frequency magnitude plot from your simulation file (hdf5), located at “path/to/sim file.h5”, simply
execute the shell command (in one line):

$ python path/to/vq/pyvq/pyvq.py --event_file path/to/sim_file.h5 --plot_freq_mag 1

If you generated a text file from your simulation, simply use instead:

$ python path/to/vq/pyvq/pyvq.py --event_file path/to/sim_file.txt --plot_freq_mag 1

This saves the plot to a file with the filename chosen from the name of the simulation file and the type of plot being
drawn, Figure 5.5.

To plot both the magnitude-rupture area and magnitude-mean slip distributions (Figure 5.6) simply execute:

$ python path/to/vq/pyvq/pyvq.py --event_file path/to/sim_file.h5

--plot_mag_rupt_area --plot_mag_mean_slip

5.7.3 Overview Plots/Functions
To list the largest N (an integer) earthquakes (by magnitude) and print their properties, execute the following:

$ python path/to/vq/pyvq/pyvq.py --event_file path/to/sim_file.h5 --summary N

To plot all the statistical plots for a simulation, e.g. the frequency-magnitude, the mean slip vs .magnitude, rupture
area vs. magnitude, and other distributions, execute the following:

$ python path/to/vq/pyvq/pyvq.py --event_file path/to/sim_file.h5 --all_stat_plots

or you can execute the following to plot all the statistical plots and some additional time series plots:

$ python path/to/vq/pyvq/pyvq.py --event_file path/to/sim_file.h5 --diagnostics

5.7. VIRTUAL QUAKE DATA ANALYSIS TUTORIAL (PYVQ) 51

Figure 5.6: Left: Example magnitude vs rupture area distribution. Right: Example magnitude vs mean slip distribu-
tion. Compare these to Wells and Coppersmith 1994 relations.

Figure 5.7: Left: Slip time series for element #20 Right: Slip time series for all elements in section 0, SAF-
Mendo Offs.

5.7.4 Time Series Plots
To plot the slip time series of element 20 from year 0 to year 100 shown in figure 5.7 (use the –dt parameter to set the
time step in units of years):

$ python path/to/vq/pyvq/pyvq.py --event_file path/to/sim_file.h5 --slip_time_series

--elements 20 --min_year 0 --max_year 200 --dt 0.5

And to plot the slip time series for all elements in section 0 (a.k.a. ”fault 0”) from year 0 to year 100 shown in
figure 5.7:

$ python path/to/vq/pyvq/pyvq.py --event_file path/to/sim_file.h5 --slip_time_series

--use_sections 0 --min_year 0 --max_year 100 --dt 0.5

5.7.5 Space-Time Plots
To visualize when and where earthquake sequences occur during the simulation on a particular fault, we will generate
space-time plots. The vertical axis is the simulation time in years, the horizontal axis is the distance along strike, the

52 CHAPTER 5. TUTORIALS

Figure 5.8: Space-time plot for simulated earthquakes from year 21000 to year 23000 on fault 153.

color will indicate event magnitude, lines are plotted to indicate which fault elements slipped during each earthquake,
and black stars denote the rupture initiation location for each event. To generate a space-time plot like Figure 5.8,
execute the following command that includes which fault (153) to plot and the simulation time range to plot (21000-
23000 years):

$ python path/to/vq/pyvq/pyvq.py --event_file path/to/sim_file.h5 --model_file

path/to/model_file.txt --use_faults 153 --min_year 21000 --max_year 23000

--spacetime

5.7.6 Earthquake Probability Plots
To plot the conditional probabilities (Figure 5.9) of an earthquake with magnitude≥ 7 occurring on sections [4,5,6,7,8,9,10,11,12,13]
(as defined in your fault model) as a function of time since the last earthquake on those sections:

$ python path/to/vq/pyvq/pyvq.py --event_file path/to/sim_file.h5

--plot_cond_prob_vs_t --model_file path/to/model.txt --model_file_type

’text’ --min_magnitude 7.0 --use_sections 4 5 6 7 8 9 10 11 12 13

To plot the expected waiting times until the next earthquake with magnitude≥ 7 occurring on sections [4,5,6,7,8,9,10,11,12,13]
as a function of time since the last earthquake on those sections:

$ python path/to/vq/pyvq/pyvq.py --event_file path/to/sim_file.h5

--plot_waiting_times --model_file path/to/model.txt --model_file_type

’text’ --min_magnitude 7.0 --use_sections 4 5 6 7 8 9 10 11 12 13

5.7. VIRTUAL QUAKE DATA ANALYSIS TUTORIAL (PYVQ) 53

Figure 5.9: Left: Conditional probability of an earthquake M ≥ 7 on the specified sections as a function of time since
the last earthquake M ≥ 7. Right: Distribution of waiting times until the next earthquake M ≥ 7 for waiting times with
25%, 50% and 75% probability.

1 year 5 years 20 years
N=25475 M > 5 0.41 0.95 1.00
N=23774 M > 6 0.39 0.93 1.00
N=7495 M > 7 0.14 0.53 0.96

You can also print out a table of conditional earthquake probabilities if you know the observed time since the
last earthquakes on your faults. To print out conditional probability table for M > 5, M > 6 and M > 7 for the next
1yr, 5yr and 20yr intervals execute the following command (here we are using observed time since the last California
earthquakes for the –t0 values). The results are shown in the table above.

$ python path/to/vq/pyvq/pyvq.py --event_file path/to/sim_file.h5

--probability_table --t0 1.0 1.4 5.8 --t 1 5 20 --magnitudes 5 6 7

5.7.7 Plotting Data on a Map and Event Field Plots
To plot the traces of your faults on a simple map:

$ python path/to/vq/pyvq/pyvq.py --event_file path/to/sim_file.h5 --model_file

path/to/model.txt --traces

To create a Google Earth file (KML) of the elements involved in an event, colored by their event slips (shown in
Figure 5.10):

$ python path/to/vq/pyvq/pyvq.py --event_file path/to/sim_file.h5 --model_file

path/to/model.txt --event_kml --event_id 0

QuakeLib uses Green’s functions to compute co-seismic fields given a fault geometry and a slip distribution.
For displacements we use Okada’s equations and for gravity, potential, and geoid height changes we use Okubo’s
equations.

To compute the gravity changes for 5 meters of uniform slip on your fault model (example shown in Figure 5.11
for single 10km by 10km faults):

$ python path/to/vq/pyvq/pyvq.py --model_file path/to/model.txt --model_file_type

’text’ --uniform_slip 5 --field_plot --field_type ’gravity’

54 CHAPTER 5. TUTORIALS

Figure 5.10: Slips for event 0. The triggering element is shown with the white place marker. Color scale is white
(almost zero slip) to red (max slip).

Figure 5.11: Left: Gravity changes for 5m slip on a 10km by 10km vertical strikeslip fault. Right: Gravity changes
for 1m slip on a 10km by 10km normal fault with dip angle 30 degrees.

5.7. VIRTUAL QUAKE DATA ANALYSIS TUTORIAL (PYVQ) 55

To compute the gravity changes and InSAR interferogram (observing with L-band 21cm) for event #210 from your
simulation (Figures 5.12 and 5.13):

$ python path/to/vq/pyvq/pyvq.py --event_file path/to/sim_file.h5 --model_file

path/to/model.txt --model_file_type ’text’ --field_plot

--field_type ’gravity’ --event_id 210

$ python path/to/vq/pyvq/pyvq.py --event_file path/to/sim_file.h5 --model_file

path/to/model.txt --model_file_type ’text’ --field_plot

--field_type ’insar’ --event_id 210 --wavelength 0.21

To evaluate an event field at specified lat/lon points, you must provide the file containing lines of lat/lon pairs
(–lld file), the result is written to a file:

$ python path/to/vq/pyvq/pyvq.py --event_file path/to/sim_file.h5 --model_file

path/to/model.txt --model_file_type ’text’ --field_eval

--field_type ’gravity’ --event_id 210 --lld_file path/to/lld_file.txt

56 CHAPTER 5. TUTORIALS

Figure 5.12: Simulated InSAR interferogram for magnitude 7.26 earthquake on the San Andreas Fault.

5.7. VIRTUAL QUAKE DATA ANALYSIS TUTORIAL (PYVQ) 57

Figure 5.13: Simulated gravity changes for magnitude 7.26 earthquake on the San Andreas Fault.

58 CHAPTER 5. TUTORIALS

5.8 PyVQ Plotting Arguments Grouped by Functionality
This section summarizes the current functionality of the pyvq script (section 5.7). These parameters do not have
default values, and are not used unless specified.

5.8.1 Model File Parameters
--event file The simulation output file.
--sweep file The simulation sweep file, required only if simulation file is text.
--model file The fault model file.
--model file type Either ’hdf5’ or ’text’.
--stress file hdf5 file containing simulation stress state information.
--combine file An hdf5 simulation file whose events will be combined with those from

–event file. Must also specify –stress file.

5.8.2 Subsetting/Filtering Parameters
These parameters are used to select subsets of the faults or subsets of events.

--use faults Select a subset of events that are triggered on the specified faults from the
model file.

--use sections Select a subset of events that are triggered on the specified fault sections
from the model file. To select sections 23, 43, and 101 it would be
“–use sections 23 43 101”.

--min magnitude Select a minimum magnitude for earthquakes to be analyzed. To select
earthquakes only above magnitude 5.5 it would be “–min magnitude 5.5”.

--max magnitude Select a maximum magnitude for earthquakes to be analyzed. Can be used
in conjunction with –min magnitude to specify a range of magnitudes.

--min year Select a minimum year for a time interval subset. Can be used in
conjunction with –max year to specify a simulation time range.

--max year Select a maximum year for a time interval subset. Can be used in
conjunction with –min year to specify a simulation time range.

--min slip Select a minimum mean slip threshold for plotting event data, units are
meters.

--max slip Select a maximum mean slip threshold for plotting event data, units are
meters.

5.8.3 Statistical Plotting Parameters
--summary n List the n earthquakes with the largest magnitude, also prints their event

mean slip, rupture area, etc.
--plot freq mag n Frequency-Magnitude. n=1 Normal plot, n=2 adds a Gutenberg-Richter

line with b=1, n=3 adds UCERF2 observed seismicity rates in California,
n=4 adds both the b=1 line and observed California rates.

--plot mag rupt area Magnitude vs Rupture Area scaling. Compare to Wells and Coppersmith
1994.

--plot mag mean slip Magnitude vs Mean Slip scaling. Compare to Wells and Coppersmith
1994.

--all stat plots Plot all statistical plots.
--wc94 Add Wells and Coppersmith 1994 scaling relation to Mean Slip or

Rupture Area plots.
--diagnostics Plot many different statistical plots and time series plots to characterize a

simulation.

5.8. PYVQ PLOTTING ARGUMENTS GROUPED BY FUNCTIONALITY 59

5.8.4 Time Series Plotting Parameters
--slip time series Plot the slip time series for a single element up to an entire fault, use with

–elements or –use sections.
--dt Time step in decimal years for slip time series plots.
--fault time series Plot the slip time series for an entire fault, use with –use faults. Ex.

“–use faults 1” to plot fault time series for fault #1. You can specify
multiple faults, and it saves one file for each fault time series.

--fault group time series After using –fault time series to save fault time series data for each fault,
make a plot of time series averaged over groups of faults by specifying
the fault time series files for each group of faults with –group1 files and
–group2 files.

--group1 files ”List of files containing the fault slip time series. Must also specify
–group2 files. These subsets are used for plotting fault group average
time series.

--group2 files List of files containing the fault slip time series. Must also specify
–group1 files. These subsets are used for plotting fault group average
time series.

--num sweeps Plot, for each event, the number of event sweeps as a function of
simulation time.

--event mean slip Plot, for each event, the mean slip as a function of simulation time.
--event shear stress Plot, for each event, the fractional change in shear stress as a function of

simulation time.
--event normal stress Plot, for each event, the fractional change in normal stress as a function of

simulation time.

5.8.5 Probability Plotting Parameters
These parameters can be used in combination with “–use sections”, “–min magnitude”, and “–max magnitude” to
select subsets of your fault model and events for analysis.

60 CHAPTER 5. TUTORIALS

--plot prob vs t Plot probability of earthquake as a function of time since the last
earthquake.

--plot prob vs t fixed dt DT Plot probability of earthquake in the next DT years as a function of time
since the last earthquake. E.g. “–plot prob vs t fixed dt 30” plots the
probability of an earthquake in the next 30 years as a function of time.

--plot cond prob vs t Plot conditional probability of earthquake as a function of time since the
last earthquake plotted at various times after the last earthquake to show
the evolution of the distribution.

--plot waiting times Plot the waiting times until the next earthquake as a function of time since
the last earthquake, for waiting times with 25%, 50% and 75% probability.

--beta Beta parameter for the Weibull distribution, must also specify tau. If beta
and tau are specified, the corresponding Weibull distribution is drawn in
the “–plot cond prob vs t” plot.

--tau Tau parameter for the Weibull distribution, must also specify beta.
--probability table Prints out probabilities of M > 5, M > 6 and M > 7 earthquakes. Must

also specify –t0.
--t0 List of times [rounded to the nearest 0.1 years] since the last observed

earthquakes of a given magnitude on the modeled faults. Must also
specify the same number of –magnitudes arguments. Example “–t0 4.1
12.5 35.9 –magnitudes 5 6 6.5” for the probabilities of M > 5, M > 6 and
M > 6.5. Can request specific number of years in the future to evaluate
the probabilities with –t.

--magnitudes List of magnitudes to compute conditional probability table for. Must also
specify the same number of –t0 arguments, where the i-th –t0 value is the
time elapsed since the last observed earthquake with magnitude M = i-th
–magnitudes value. Example “–t0 4.1 12.5 35.9 –magnitudes 5 6 6.5” for
the probabilities of M > 5, M > 6 and M > 6.5. Can request specific
number of years in the future to evaluate the probabilities with –t.

--t Number of years into the future to evaluate conditional probabilities. E.g.
“–t 1 5 10” will evaluate the conditional probabilities for earthquakes with
magnitudes given by –magnitudes, with the last-observed earthquake of
each magnitude occurring at each value of –t0. Example “–t0 4.1 12.5
35.9 –magnitudes 5 6 6.5” for the conditional probabilities of M > 5,
M > 6 and M > 6.5 at 1, 5 and 10 years from present if the last
earthquakes of each magnitude were –t0 years ago.

--fit weibull Fit the weibull distribution to the probability plots and plot the best fitting
Weibull distribution.

--plot recurrence Plot a histogram of recurrence times. This is best used with subsetting
commands, selecting a particular fault section(s) with –use sections or a
particular fault(s) with –use faults.

5.8.6 Field Plotting Parameters
For any field plot you must specify “–model file” and “–model file type”. To plot co-seismic fields, you must also
specify an “–event file”, “–event file type”, and “–event id”. To plot the field resulting from uniform slip across the
entire fault model you must also specify “–uniform slip”.

5.8. PYVQ PLOTTING ARGUMENTS GROUPED BY FUNCTIONALITY 61

--field plot Required to plot any fields
--field type The type of co-seismic field to plot. Options are: “gravity”,

“satellite gravity”,, “dilat gravity” (dilatational), “displacement”, “insar”,
“potential” (gravitational potential), “geoid” (geoid height changes).

--wavelength The observing wavelength for the InSAR interferogram, default is 21cm.
--no mask This option turns off the ocean-masking for displacement plots.
--event id The number of the event to plot.
--uniform slip The slip to apply to every fault element in the fault model, in meters.
--colorbar max The maximum value for the colorbar scale on field plots (excluding insar

and displacement). E.g. to limit the gravity field plots to the color range
-20 microGal to 20 microGal you would specify “–colorbar max 20”.

--angles The observing angles for displacements and InSAR, the field is projected
along this direction. Must specify azimuth and elevation angles in
degrees. E.g. “–angles 20.5 66.2”.

--field eval Evaluate an event field at given lat/lon points. Must specify –field type,
–lld file. Results are saved to file

--lld file Text file containing lat/lon pairs in columns. Used for field evaluations.

5.8.7 Geometry/Model Plotting Parameters
For any geometry plot you must specify “–model file”.

--spacetime Create and save a Space-Time plot for a particular fault over a particular
simulation time range. Must also specify –min year, –max year, and
–use faults.

--event kml Create and save a Google Earth (KML) file that includes elements that
slip during the specified event, colored by the amount of event slip. Must
also specify –event id.

--block area hist Create and save a histogram of fault element areas. To present numbers
relative to a reference value, must specify –reference .

--block length hist Create and save a histogram of fault element lengths (square root of area).
To present numbers relative to a reference value, must specify –reference .

--block aseismic hist Create and save a histogram of fault element aseismic fractions (percent
of fault slip that is aseismic).

--fault length hist Create and save a histogram of fault lengths . To present numbers relative
to a reference value, must specify –reference .

--fault length distribution Create and save the cumulative distribution of fault lengths.
--reference A reference number or unit value for --block length hist or

--block area hist plots.
--traces Plot the fault traces on a simple map.

5.8.8 Miscellaneous Plotting Parameters
--dpi The dots-per-inch resolution of the figures to be saved. E.g. –dpi 300.
--pdf Save figures as PDF instead of the default PNG.
--eps Save figures as EPS instead of the default PNG.
--no titles Save figures without titles.

62 CHAPTER 5. TUTORIALS

Part III

Appendices

63

Appendix A

Input Parameters for Virtual Quake

A.1 Input Parameters Grouped by Functionality
This section explains the meaning of the input parameters for Virtual Quake. These parameters are grouped by their
functionality. Parameters are given with their default values.

A.1.1 Simulation time parameters
sim.time.start year = 0 The starting year of the simulation
sim.time.end year = 1000 The ending year of the simulation.

A.1.2 System Parameters
sim.system.sanity check = false Whether to perform sanity checks on simulation values each time

step and abort if any values are outside acceptable ranges.
sim.system.transpose matrix = true Whether to store the Green’s matrix in a transposed form to

significantly improve performance. This should only be set to false
for comparative performance profiling.

sim.system.progress period = 0 How frequently (in wall time seconds) to display simulation
progress. If undefined or <= 0, simulation progress will not be
displayed.

A.1.3 Friction parameters
sim.friction.dynamic The dynamic rupture value to use in the simulation from 0 to 1.

Higher values indicate ruptures are more likely to propagate along a
fault and result in larger earthquakes, while lower values indicate
ruptures are less likely to propagate and result in smaller
earthquakes.

65

66 APPENDIX A. INPUT PARAMETERS FOR VIRTUAL QUAKE

A.1. INPUT PARAMETERS GROUPED BY FUNCTIONALITY 67

A.1.4 Green’s function parameters
sim.greens.method = standard The method to calculate the Green’s functions for fault element

stress interactions. There are three possible choices for this
parameter - standard, bh and file. The standard option will
calculate the Green’s functions using the normal Okada equations
with all element-element interactions. The bh option will use a
Barnes Hut style approximation. The file option will read
precalculated values from an input file (specified using
sim.greens.input).

sim.greens.bh theta = 0.0 Parameter for Barnes Hut calculation of Green’s function (between
0 and 1). Lower values mean less of an approximation. If undefined,
defaults to 0 (meaning it effectively doesn’t use Barnes Hut
approximation).

sim.greens.input If sim.greens.method is defined as file, this is the name of the
HDF5 file to read the Green’s function values from.

sim.greens.output The name of the HDF5 file to write the Green’s function values to. If
unspecified, Green’s function values are not written to a file after
being calculated.

sim.greens.use normal = true Whether to use the Green’s normal stress function in calculations or
just the Green’s shear function.

sim.greens.kill distance = 0.0 Kills interaction between any two elements greater than this distance
(in km) apart. If undefined or <= 0, all interactions will remain the
same.

sim.greens.sample distance = 1000.0 When calculating the Green’s function, take samples at this
minimum distance between samples. This allows better convergence
between models with few large elements and models with many
small elements. If the element size is smaller than this value, it has
no effect.

sim.greens.offdiag multiplier = 1.0 If specified, this multiplies the interaction Greens function values by
a factor between 0 and 1.

sim.greens.shear offdiag min Double, no default value. If specified, this truncates the shear
interaction Greens function values to some minimum. Sometimes
required if the mesher puts fault elements too close together.

sim.greens.shear offdiag max Double, no default value. If specified, this truncates the shear
interaction Greens function values to some maximum. Sometimes
required if the mesher puts fault elements too close together.

sim.greens.shear diag max Double, no default value. If specified, this truncates the shear
self-stress Greens function values to some maximum. Sometimes
required if the mesher puts fault elements too close together.

sim.greens.shear diag min Double, no default value. If specified, this truncates the shear
self-stress Greens function values to some minimum. Sometimes
required if the mesher puts fault elements too close together.

sim.greens.normal offdiag min Double, no default value. If specified, this truncates the normal
interaction Greens function values to some minimum. Sometimes
required if the mesher puts fault elements too close together.

sim.greens.normal offdiag max Double, no default value. If specified, this truncates the normal
interaction Greens function values to some maximum. Sometimes
required if the mesher puts fault elements too close together.

sim.greens.normal diag max Double, no default value. If specified, this truncates the normal
self-stress Greens function values to some maximum. Sometimes
required if the mesher puts fault elements too close together.

sim.greens.normal diag min Double, no default value. If specified, this truncates the normal
self-stress Greens function values to some minimum. Sometimes
required if the mesher puts fault elements too close together.

68 APPENDIX A. INPUT PARAMETERS FOR VIRTUAL QUAKE

A.1.5 File I/O parameters
sim.file.input The input model file of the simulation.
sim.file.input type The input model file format - must be one of text or hdf5.
sim.file.output event The file which events will be written to. If undefined, events will not

be recorded.
sim.file.output sweep The file which sweeps will be written to. If undefined, sweeps will

not be recorded.
sim.file.output event type The file format to output events - must be one of text or hdf5. If

hdf5, sweep and event information will be printed to the same file
specified by sim.file.output event.

sim.file.output stress The file to output the stress state after a specified number of events,
specified by sim.file.output stress num events.

sim.file.output stress type The file type for stress output, either text or hdf5. If text, must also
specify sim.file.output stress index.

sim.file.output stress index The text file name to write the stress state information. Must be used
with sim.file.output stress.

sim.file.output stress num events The number of events before each stress state output.
sim.file.input stress The stress state file used to set initial stresses.
sim.file.input stress type The file type for stress input, either text or hdf5. If text, must also

specify sim.file.input stress index.
sim.file.input stress index The text file name to load stress state information. Must be used

with sim.file.input stress.

A.1.6 BASS (Branching Aftershock Sequence) model parameters
sim.bass.max generations = 0 Maximum number of aftershock generations to generate in BASS

model. If this is 0 then the BASS aftershock model will not be used.
sim.bass.mm = 4.0

sim.bass.dm = 1.25

sim.bass.b = 1.0

sim.bass.c = 0.1

sim.bass.p = 1.25

sim.bass.d = 300

sim.bass.q = 1.35

Different parameters for BASS model. See paper [9] for details.
Mm: minimum magnitude
dM: strength of aftershock sequence (intensity of aftershocks)
b: scaling of frequency magnitude
c: start of aftershocks in days
p: time decay rate of aftershocks
d: distance parameter for aftershocks in meters
q: distance decay rate

Appendix B

Virtual Quake Input Model Format

B.1 Trace File Format
The initial fault geometry for VQ runs is defined by the trace file. Each trace file describes a single fault by the
location of points along the fault trace and associated fault characteristics at each of the points. A single VQ model
for a simulation can be generated by combining multiple fault traces using the mesher program (see Section 5.4 for an
example).

The trace files are ASCII format with comments indicated by a # (hash) mark. Lines that begin with a # will be
ignored and any values after a # in a line will be ignored. The initial line in the trace file outlines the fault described in
the file using the following attributes:

fault id ID number of the parent fault of this section. Used to unify multi-segment
faults defined in separate files.

sec id ID number of this section.
num points The number of trace points comprising this section.
section name Name of the section, may not contain whitespace.

The remainder of the file defines each of the trace points for the fault. Each trace point is described using the
following attributes. The units of the attributes in the file were chosen to be easily human understandable. In the
simulation they are converted to SI units though this is hidden from the user.

latitude Latitude of trace point (must be in [-90, 90]).
longitude Longitude of trace point (must be in [-180, 180]).
altitude Altitude of trace point in meters above ground. All faults should be

underground (negative altitude). Faults defined above ground will have
undefined results.

depth along dip The depth of the fault along the dip in meters (must be greater than 0). For a
dip angle of δ the actual depth of the fault will be depth along dip*sinδ .

slip rate The long term slip rate of the fault in centimeters per year.
aseismic The fraction of slip that is aseismic (must be in [0,1]).
rake The fault rake angle in degrees (must be in [-180, 180]).
dip The fault dip angle in degrees (must be in [0,90]).
lame mu Lame’s mu parameter describing material properties in Pascals (must be

greater than 0).
lame lambda Lame’s lambda parameter describing material properties in Pascals.

69

70 APPENDIX B. VIRTUAL QUAKE INPUT MODEL FORMAT

Appendix C

Mesher Program Options

C.1 Mesher Options Grouped by Functionality
This section explains the meaning of the options used by the mesher program for Virtual Quake model file manipula-
tion. These options are grouped by their functionality.

C.1.1 General Options
-s FILE, --print statistics=FILE Print statistics regarding final model to the specified

file.
-m, --merge duplicate verts Merge duplicate vertices after importing files.
-d, --delete unused Delete unused vertices after importing files.
-q --stress drop factor Default is 0.3, this factor is a stress drop multiplier on

a log scale. Increasing by 0.1 implies a global stress
drop increase of 40%. See section 2.3.1.

-t METHOD, --taper fault method=METHOD Specify the how to taper the imported fault model
when meshing. Choices for taper method are: none,
taper, taper full, taper renorm. See 5.2.6.1 for a
description of tapering.

C.1.2 File Import Options
-i FILE, --import file=FILE Specify a model file to import and merge. Must have a

paired import file type.
-j TYPE, --import file type=TYPE Specify a model file type for importing. Must have a

paired import file. Must be one of trace, text, or hdf5.
-l FILE, --import trace element size=FILE Specify the element size to use for trace file meshing.

Must have a paired trace type file import.
-C FILE, --import eqsim condition=FILE Specify an EQSim condition file to import for the

model.
-F FILE, --import eqsim friction=FILE Specify an EQSim friction file to import for the model.
-G FILE, --import eqsim geometry=FILE Specify an EQSim geometry file to import for the

model.
-v, --vertex das by section Use if imported vertex distances along strikes (from

EQSim file) are given with respect to section instead of
whole fault..

71

72 APPENDIX C. MESHER PROGRAM OPTIONS

C.1.3 File Export Options
-e FILE, --export file=FILE Specify a file to export the completed model to. Must

have a paired export file type.
-f TYPE, --export file type=TYPE Specify a file type to export the completed model.

Must have a paired export file. Must be one of trace,
trace faultwise, text, or hdf5.

-D FILE, --export eqsim condition=FILE Specify an EQSim condition file to export for the
model.

-R FILE, --export eqsim friction=FILE Specify an EQSim friction file to export for the model.
-M FILE, --export eqsim geometry=FILE Specify an EQSim geometry file to export for the

model.

Appendix D

Virtual Quake Output File Format

D.1 Introduction
The format of the output files of Virtual Quake is described here. All outputs are in non-dimensional units unless
otherwise specified.

D.2 HDF5 Output
If Virtual Quake is compiled with the HDF5 library it is possible to output simulation results in this format. The
output file is composed of several tables and datasets describing the input and output to a simulation. Depending on
user options some of these tables may be empty but they will always exist in the file.

D.2.1 About HDF5
The Hierarchical Data Format (HDF) is a portable file format developed at the National Center for Supercomputing
Applications (NCSA) (hdf.ncsa.uiuc.edu/HDF5). It is designed for storing, retrieving, analyzing, visualizing, and
converting scientific data. The current and most popular version is HDF5, which stores multi-dimensional arrays
together with ancillary data in a portable self-describing format.

HDF5 files are organized in a hierarchical structure, similar to a Unix file system. Two types of primary objects,
groups and datasets, are stored in this structure. A group contains instances of zero or more groups or datasets, while
a dataset stores a multi-dimensional array of data elements. Both kinds of objects are accompanied by supporting
metadata.

A dataset is physically stored in two parts: a header and a data array. The header contains miscellaneous metadata
describing the dataset as well as information that is needed to interpret the array portion of the dataset. Essentially,
it includes the name, datatype, dataspace, and storage layout of the dataset. The name is a text string identifying the
dataset. The datatype describes the type of the data array elements. The dataspace defines the dimensionality of the
dataset, i.e., the size and shape of the multi-dimensional array. The dimensions of a dataset can be either fixed or
unlimited (extensible). The storage layout specifies how the data arrays are arranged in the file.

D.2.1.1 Accessing Data Using HDFView

NCSA HDFView is a visual tool for accessing HDF files. You can use it for viewing the internal file hierarchy in a
tree structure, creating new files, adding or deleting groups and datasets, and modifying existing datasets. HDFView is
capable of displaying 2D slices of multi-dimensional datasets, with navigation arrow buttons that enable you to range
over the entire extent of a third dimension.

73

hdf.ncsa.uiuc.edu/HDF5

74 APPENDIX D. VIRTUAL QUAKE OUTPUT FILE FORMAT

D.3 Events
The table titled event table describes the events that occurred during a simulation. This table gives a more general
overview of the event information, with detailed information (e.g. which blocks slipped by how much in what order
releasing how much stress) given in event sweep table. Corresponding data is instead written to ASCII text files if
the appropriate parameter is set in the simulation parameter file.

Attribute Name Attribute Description
event number A unique numerically ascending ID number of the event.
event year The simulation year that the event occurred in.
event trigger The ID of the block that triggered the event, i.e. the ID of the first block to

fail.
event magnitude The moment magnitude of the event calculated based on the area, slip and

shear modulus.
event shear init The summed initial shear stress on all blocks involved in the event (in

Pascals).
event normal init The summed initial normal stress on all blocks involved in the event (in

Pascals).
event shear final The summed final shear stress on all blocks involved in the event (in

Pascals).
event normal final The summed final normal stress on all blocks involved in the event (in

Pascals).
start sweep The ID of the first sweep of the event.
end sweep The ID of the final sweep of the event.

D.4 Event Sweeps
The table titled event sweep table describes the individual block failures in the sweeps during an event. There can
be multiple sweeps within an event and there can be multiple block failures within each sweep. Each line in the table
represents a block failure in a given sweep. Corresponding data is instead written to ASCII text files if the appropriate
parameter is set in the simulation parameter file.

Attribute Name Attribute Description
event number The event which this sweep is a part of.
sweep num The numerical ID of the sweep within the event (starts at 0 for each event).
block id The numerical ID of the block that failed.
slip The amount that the block slipped in this sweep, not cumulative (in meters).
area The area of the block that slipped (in square meters)
mu The shear modulus of the block (in Pascals).
shear init The shear stress on the block before the sweep (in Pascals).
normal init The normal stress on the block before the sweep (in Pascals).
shear final The shear stress on the block at the end of the sweep (in Pascals).
normal final The normal stress on the block at the end of the sweep (in Pascals).

Appendix E

License

Copyright (c) 2012-2014 Eric M. Heien, Michael K. Sachs, Kasey W. Schultz, John B. Rundle
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated

documentation files (the “Software”), to deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

75

76 APPENDIX E. LICENSE

Bibliography

[1] Michael Barall. Data transfer file formats for earthquake simulators. Seismological Research Letters, 83(6):991–
993, 2012.

[2] David M. Beazley. Swig: an easy to use tool for integrating scripting languages with c and c++. In Proceedings
of the 4th conference on USENIX Tcl/Tk Workshop, 1996 - Volume 4, TCLTK’96, pages 15–15, Berkeley, CA,
USA, 1996. USENIX Association.

[3] Yoshimitsu Okada. Internal deformation due to shear and tensile faults in a half-space. Bulletin of the Seismo-
logical Society of America, 82(2):1018–1040, 1992.

[4] J. B. Rundle, P. B. Rundle, W. Klein, J. de sa Martins, K. F. Tiampo, A. Donnellan, and L. H. Kellogg. Gem
plate boundary simulations for the plate boundary observatory: A program for understanding the physics of
earthquakes on complex fault networks via observations, theory and numerical simulation. pure and applied
geophysics, 159:2357–2381, 2002.

[5] John B Rundle. A Physical Model for Earthquakes 2. Application to Southern California. J. Geophys. Res.,
93(B6):6255–6274, 1988.

[6] P. B. Rundle, J. B. Rundle, K. F. Tiampo, J. S. Sa Martins, S. McGinnis, and W. Klein. Nonlinear Network
Dynamics on Earthquake Fault Systems. Physical Review Letters, 87(14):148501, October 2001.

[7] P.B. Rundle, J.B. Rundle, K.F. Tiampo, A. Donnellan, and D.L. Turcotte. Virtual california: Fault model,
frictional parameters, applications. pure and applied geophysics, 163:1819–1846, 2006.

[8] Terry E. Tullis, Keith Richards-Dinger, Michael Barall, James H. Dieterich, Edward H. Field, Eric M. Heien,
Louise H. Kellogg, Fred F. Pollitz, John B. Rundle, Michael K. Sachs, Donald L. Turcotte, Steven N. Ward, and
M. Burak Yikilmaz. A comparison among observations and earthquake simulator results for the allcal2 california
fault model. Seismological Research Letters, 83(6):994–1006, November/December 2012.

[9] D Turcotte, J Holliday, and J Rundle. BASS, an alternative to ETAS. Geophys. Res. Lett, 2007.

[10] Steven N. Ward. Allcal earthquake simulator. Seismological Research Letters, 83(6):964–972, 2012.

[11] G. Yakovlev, D. L. Turcotte, J. B. Rundle, and P. B. Rundle. Simulation Based Distributions of Earthquake
Recurrence Times on the San Andreas Fault System. AGU Fall Meeting Abstracts, page A3, December 2005.

[12] M. B. Yikilmaz. Studies of Fault Interactions and Regional Seismicity Using Numerical Simulations. PhD thesis,
University of California, Davis, 2010.

[13] M. B. Yikilmaz, E. M. Heien, D. L. Turcotte, J. B. Rundle, and L. H. Kellogg. A fault and seismicity based
composite simulation in northern california. Nonlinear Processes in Geophysics, 18(6):955–966, 2011.

77

	I Preface
	II Chapters
	Introductions
	About Virtual Quake
	History
	About QuakeLib

	VQ Components and Governing Equations
	Fault Model
	Included California Fault Model
	Model Parameters and Initial Conditions
	Setting Fault Parameters and Building a Fault Model

	Element Stress Interactions
	Green's Functions
	Event Transition Time

	Rupture Model
	Stress Drops
	ETAS Aftershock Model

	Simulation Flow
	QuakeLib Tour
	Conventions
	Single Element Examples
	Stress Field
	Displacement Field
	Gravity Field Anomalies

	Topologically Realistic Examples
	Displacement Field
	Gravity Field Anomalies

	Getting Started and Installation
	Introduction
	Getting Help
	Compiling from Source
	System Requirements
	Obtaining Source
	Installation Procedure
	Mac OS X
	Install Locations
	Selecting a Compiler — Multiprocessing
	HDFView

	Docker Image
	Initial Setup
	Running a Container
	Running Simulations

	Running VQ
	Introduction
	Basic Usage and Tests
	CMake Tests
	Explicit Test Simulation

	Advanced Usage
	Tuning Parameters
	Simulation Performance and Scaling
	Element Size and Minimum Magnitude

	Tutorials
	Overview
	Prerequisites

	Building a Fault Model
	Trace File
	Example Traces
	Friction Parameters
	Simulation Parameter File
	Producing a Fault Model
	Using the Mesher
	Taper Functionality

	Parameter File
	Bounding the Greens Functions
	Periodically Saving the Simulation State

	Single Element Tutorial
	Overview
	Creating Input Files
	Edit Parameter File
	Running VQ
	Results

	Tutorial Using Multiple Elements
	Overview
	Creating Input Files
	Running VQ
	Results

	Multiple Fault Trace Points
	Overview
	Input Files
	Running VQ
	Results

	Building the full California Fault Model
	Overview

	Virtual Quake Data Analysis Tutorial (PyVQ)
	Overview
	Simulation Statistics Plots
	Overview Plots/Functions
	Time Series Plots
	Space-Time Plots
	Earthquake Probability Plots
	Plotting Data on a Map and Event Field Plots

	PyVQ Plotting Arguments Grouped by Functionality
	Model File Parameters
	Subsetting/Filtering Parameters
	Statistical Plotting Parameters
	Time Series Plotting Parameters
	Probability Plotting Parameters
	Field Plotting Parameters
	Geometry/Model Plotting Parameters
	Miscellaneous Plotting Parameters

	III Appendices
	Input Parameters for Virtual Quake
	Input Parameters Grouped by Functionality
	Simulation time parameters
	System Parameters
	Friction parameters
	Green's function parameters
	File I/O parameters
	BASS (Branching Aftershock Sequence) model parameters

	Virtual Quake Input Model Format
	Trace File Format

	Mesher Program Options
	Mesher Options Grouped by Functionality
	General Options
	File Import Options
	File Export Options

	Virtual Quake Output File Format
	Introduction
	HDF5 Output
	About HDF5
	Accessing Data Using HDFView

	Events
	Event Sweeps

	License

