
PyLith

Brad Aagaard, Charles Williams, Matthew Knepley,
Sue Kientz and Leif Strand

June 22, 2009



PyLith

What is it good for?

• Elasticity problems where geometry does not change significantly

• Quasi-static crustal deformation

• Strain accumulation associated with interseismic deformation
• Post-seismic relaxation of the crust
• Volcanic deformation associated with magma chambers and/or

dikes

• Dynamic rupture and wave propagation

• Kinematic (prescribed) earthquake ruptures
• Local/regional ground-motion modeling

1



Crustal Deformation Modeling

Overview of workflow for typical research problem

FreeCIG

Open 
Source

Commercial

Available

Planned

Legend

Geologic 
Structure

Mesh 
Generation

Physics 
Code Visualization

Gocad

Earth Vision CUBIT

LaGriT

NetGen

TetGen

PyLith

GeoFEST

Abaqus

ParaView

Mayavi2

Visit

OpenDX

Matlab

Iris Explorer

Fledermaus

2



Features in PyLith 1.4

Enhancements and new features in blue

• Time integration schemes

• Implicit time stepping for quasi-static problems
• Explicit time stepping for dynamic problems

• Bulk constitutive models

• Elastic model (1-D, 2-D, and 3-D)
• Linear and Generalized Maxwell viscoelastic models (3-D)
• Power-law viscoelastic model (3-D)

• Boundary and interface conditions

• Time-dependent Dirichlet boundary conditions
• Time-dependent Neumann (traction) boundary conditions
• Absorbing boundary conditions
• Kinematic (prescribed slip) fault interfaces w/multiple ruptures
• Time-dependent point forces
• Gravitational body forces

3



Features in PyLith 1.4 (cont.)

Enhancements and new features in blue

• Automatic and user-controlled time stepping

• Ability to specify initial stress state

• Importing meshes

• LaGriT: GMV/Pset
• CUBIT: Exodus II
• ASCII: PyLith mesh ASCII format (intended for toy problems only)

• Output: VTK files

• Solution over volume
• Solution over surface boundary
• State variables (e.g., stress and strain) for each material
• Fault information (e.g., slip and tractions)

• Automatic conversion of units for all parameters
4



PyLith 1.4: Under-the-hood Improvements

• General cleanup of C++ code

• Pyrex/pyrexembed replaced by SWIG

• Greatly simplifies creating Python bindings for C++ objects
• SWIG generated files included in source distribution
• User-defined spatial databases and bulk constitutive models

• Automatic nondimensionalization of problem

• User supplies pressure, time, and length scale of problem
• All parameters nondimensionalized appropriately
• Eliminates need to condition terms in sparse matrix
• Restores symmetry of sparse matrix (reduces memory use)

• Integration with PETSc Scalable Nonlinear Equations Solvers

• Displacement increment formulation for implicit and dynamic time-
stepping

5



PyLith 1.4 Performance

PyLith 1.4 is ∼5% faster and uses ∼50% less memory than PyLith 1.3

100 101

Number of Processors

103

104
R

u
n
ti

m
e
 (

s)

Strong scaling

Runtime versus Number of Processors

Tet4 total

Tet4 compute
Hex8 total

Hex8 compute

6



PyLith 1.x: Planned Releases

Current productivity is about 2 feature releases per year

• PyLith 1.5: anticipate release in late 2009 or early 2010

• Fault constitutive behavior with several widely used friction models
• Ability to specify initial strain and state variables

• PyLith 1.6: Large deformations and finite strain

• PyLith 1.7: Automation of 4-D Green’s functions

• PyLith 1.8: Coupling of quasi-static and dynamic simulations

• Long-term objectives

• Adaptive mesh refinement
• Easier meshing (better meshers or ability to use structured

meshes)

7



PyLith Design Objective

Want a code developed for and by the community

• Modular

• Users can swap modules to run the problem of interest

• Scalable

• Code runs on one to a thousand processors efficiently

• Extensible

• Expert users can add functionality to solve their problem without
polluting main code

8



PyLith is a Community Code

Success of code depends on community participation

• End-users (anyone who uses the code)

• Help define and prioritize features that should be added
• Report bugs/problems and suggest improvements

• Expert users

• Help test alpha versions of releases
• Run benchmarks and report results
• Contribute meshing and visualization examples to documentation
• Add features following template (e.g., constitutive models)

• Developer

• Define development strategy
• Implement new features and tests
• Write documentation

9



PyLith Design: Focus on Geodynamics

Leverage packages developed by computational scientists

PyLithPyLith

PyLithPETSc

PyLithPyre PyLithSieve PyLithProj.4 PyLithFIAT

PyLithnumpy

PyLithMPI BLAS/LAPACK PyLithboost

10



PyLith Design: Code Architecture

Flexible and modular with good performance

• Top-level code written in Python

• Expressive, high-level, object-oriented language
• Dynamic typing allows adding additional modules at runtime
• Convenient scripting

• Low-level code written in C++

• Compiled (fast execution), object oriented language

• Bindings to glue Python & C++ together

• SWIG generates code for calling C++ functions from Python

11



PyLith Design

Tests, tests, and more tests (>1100 in all)

• Create tests for nearly every function during development

• Remove most bugs during initial implementation
• Isolate and expose bugs at origin

• Create new tests to expose bugs reported

• Prevent bugs from reoccurring

• Rerun tests whenever code is changed

• Allows optimization of performance with quality control
• Code continually improves

12



Example of Automated Building and Testing

Test written to expose bug, buildbot shows tests fail

13



Automated Building and Testing

Bug is fixed, buildbot shows tests pass

14



Implementation: Finite-Element Data Structures

Use Sieve for storage and manipulating mesh information

• PyLith makes only a few MPI calls

• Data structures are independent of basis functions and reference
cells

• Same code for many cell shapes and types
• Physics implementation limits code, not data structures

• Sieve routines force adhering to finite-element formulation

• Do not have access to underlying storage
• Manipulations must be done using Sieve interface
• Only valid finite-element manipulation is allowed

15



Implementation: Fault Interfaces

Use cohesive cells to control fault behavior

Original Mesh Mesh with Cohesive Cell

0

Exploded view of meshes

4

5

6622

31

0

3 7 7

4620

571 31 3 5

420

1 3 3 5

422

16



Kinematic (prescribed) slip earthquake ruptures

Use Lagrange multipliers to specify slip

• System without cohesive cells

A~u = ~b

• System with cohesive cells

(
A CT

C 0

)(
~u
~L

)
=

(
~b
~D

)

17



Implementing Fault Slip with Lagrange multipliers

• Advantages

• Fault implementation is local to cohesive cell
• Solution includes forces generating slip (Lagrange multipliers)
• Retains block structure of matrix (same number of DOF per vertex)
• Offsets in mesh mimic slip on natural faults

• Disadvantages

• Creates a saddle point problem (slower convergence)
• Mixes displacements and forces in solution

18



Benchmarking PyLith

Analytical solution from Savage and Prescott (1978)

• Repeated rupture on a vertical, strike-slip fault

• Elastic layer over a linear Maxwell viscoelastic half-space

• Steady creep over bottom half of the elastic layer

19



Benchmarking PyLith

Simulation closely matches analytical solution during 10th eq cycle

0 2 4 6 8 10
Dist. from fault / Elastic thickness

0.0

0.1

0.2

0.3

0.4

0.5

D
is
p
.
/
C
o
s
e
is
m
ic
D
is
p
.

t=0.05

t=0.25

t=0.50

t=0.75

t=0.95analytic

simulation

20


	PyLith
	PyLith
	Crustal Deformation Modeling
	Features in PyLith 1.4
	Features in PyLith 1.4 (cont.)
	PyLith 1.4: Under-the-hood Improvements
	PyLith 1.4 Performance
	PyLith 1.x: Planned Releases
	PyLith Design Objective
	PyLith is a Community Code
	PyLith Design: Focus on Geodynamics
	PyLith Design: Code Architecture
	PyLith Design
	Example of Automated Building and Testing
	Automated Building and Testing
	Implementation: Finite-Element Data Structures
	Implementation: Fault Interfaces
	Kinematic (prescribed) slip earthquake ruptures
	Implementing Fault Slip with Lagrange multipliers
	Benchmarking PyLith
	Benchmarking PyLith

