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PyLith

What is it good for?

• Elasticity problems where geometry does not change significantly

• Quasi-static crustal deformation

• Strain accumulation associated with interseismic deformation
• Post-seismic relaxation of the crust
• Volcanic deformation associated with magma chambers and/or

dikes

• Dynamic rupture and wave propagation

• Kinematic (prescribed) earthquake ruptures
• Local/regional ground-motion modeling

1



Crustal Deformation Modeling

Overview of workflow for typical research problem
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Features in PyLith 1.3

• Spatial dimensions: 1-D, 2-D, or 3-D

• Time integration schemes

• Implicit time stepping for quasi-static problems
• Explicit time stepping for dynamic problems

• Bulk constitutive models

• Elastic model (1-D, 2-D, and 3-D)
• Linear and Generalized Maxwell viscoelastic models (3-D)

• Boundary and interface conditions

• Dirichlet (prescribed displacement and velocity) boundary conditions
• Neumann (traction) boundary conditions
• Absorbing boundary conditions
• Kinematic (prescribed slip) fault interfaces w/multiple ruptures
• Gravitational body forces
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Features in PyLith 1.3 (cont.)

• Automatic and user-controlled time stepping

• Ability to specify initial stress state

• Importing meshes

• LaGriT: GMV/Pset
• CUBIT: Exodus II
• ASCII: PyLith mesh ASCII format (intended for toy problems only)

• Output: VTK files

• Solution over volume
• Solution over surface boundary
• State variables (e.g., stress and strain) for each material
• Fault information (e.g., slip and tractions)
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PyLith 1.x: Planned Releases

Current productivity is about 2 feature releases per year

• PyLith 1.4: June 2009

• Power-law viscoelastic rheology and PETSc nonlinear solvers
• Ability to specify initial stress, strain, and state variables
• Automatic, transparent nondimensionalization
• Use SWIG for Python/C++ interface

• PyLith 1.5: anticipate release in Fall 2009

• Fault constitutive behavior with several widely used friction models

• PyLith 1.6: anticipate release in Spring/Summer 2010

• Time dependent boundary conditions
• Large deformations and finite strain

• PyLith 1.7: Automation of 4-D Green’s functions

• PyLith 1.8: Coupling of quasi-static and dynamic simulations
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Motivation for Developing PyLith

• Available modeling codes

• rarely solve the problem you want to solve
• are often poorly documented
• may not work correctly

• Current research demands larger, more complex simulations

• Want to avoid multiple, incompatible versions of the same code
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PyLith Design Objective

Want a code developed for and by the community

• Modular

• Users can swap modules to run the problem of interest

• Scalable

• Code runs on one to a thousand processors efficiently

• Extensible

• Expert users can add functionality to solve their problem without
polluting main code
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PyLith is a Community Code

Success of code depends on community participation

• End-users (anyone who uses the code)

• Help define and prioritize features that should be added
• Report bugs/problems and suggest improvements

• Expert users

• Help test alpha versions of releases
• Run benchmarks and report results
• Contribute meshing and visualization examples to documentation
• Add features following template (e.g., constitutive models)

• Developer

• Define development strategy
• Implement new features and tests
• Write documentation
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PyLith Design: Focus on Geodynamics

Leverage packages developed by computational scientists

PyLithPyLith

PyLithPETSc

PyLithPyre PyLithSieve PyLithProj.4 PyLithFIAT

PyLithnumpy

PyLithMPI BLAS/LAPACK PyLithboost

9



PyLith Design: Code Architecture

Flexible and modular with good performance

• Top-level code written in Python

• Expressive, high-level, object-oriented language
• Dynamic typing allows adding additional modules at runtime
• Convenient scripting

• Low-level code written in C++

• Compiled (fast execution), object oriented language

• Bindings to glue Python & C++ together

• Pyrex/pyrexembed generate C code for calling C++ from Python
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PyLith Design

Tests, tests, and more tests (>1100 in all)

• Create tests for nearly every function during development

• Remove most bugs during initial implementation
• Isolate and expose bugs at origin

• Create new tests to expose bugs reported

• Prevent bugs from reoccurring

• Rerun tests whenever code is changed

• Allows optimization of performance with quality control
• Code continually improves
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Example of Automated Building and Testing

Test written to expose bug, buildbot shows tests fail
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Automated Building and Testing

Bug is fixed, buildbot shows tests pass
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Implementation: Finite-Element Data Structures

Use Sieve for storage and manipulating mesh information

• PyLith makes only a few MPI calls

• Data structures are independent of basis functions and reference
cells

• Same code for many cell shapes and types
• Physics implementation limits code, not data structures

• Sieve routines force adhering to finite-element formulation

• Do not have access to underlying storage
• Manipulations must be done using Sieve interface
• Only valid finite-element manipulation is allowed
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Implementation: Fault Interfaces

Use cohesive cells to control fault behavior
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Kinematic (prescribed) slip earthquake ruptures

Use Lagrange multipliers to specify slip

• System without cohesive cells
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• System with cohesive cells
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Implementing Fault Slip with Lagrange multipliers

• Advantages

• Fault implementation is local to cohesive cell
• Solution includes forces generating slip (Lagrange multipliers)
• Retains block structure of matrix (same number of DOF per vertex)
• Offsets in mesh mimic slip on natural faults

• Disadvantages

• Conditioned matrix is non-symmetric
• Mixes displacements and forces in solution
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Benchmarking PyLith

Simulation closely matches analytical solution during 10th eq cycle
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Running PyLith

Ingredients

• Simulation parameters

• Finite-element mesh

• Mesh exported from LaGriT
• Mesh exported from CUBIT
• Mesh constructed by hand (PyLith mesh ASCII format)

• Spatial databases for physical properties, boundary conditions, and
rupture parameters

• SCEC CVM-H, USGS Bay Area Velocity model, or simple ASCII
files

• Independent of discretization scheme and size
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Useful Tips/Tricks

• Command line arguments

• --help
• --help-components
• --help-properties
• --petsc.start in debugger (run in xterm)
• --nodes=N (to run on N processors on local machine)

• PyLith User Manual

• CIG Short-Term Tectonics mailing list

• cig-short@geodynamics.org

• CIG bug tracking system

• http://www.geodynamics.org/roundup
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Crustal Deformation Modeling

Overview of workflow for typical research problem
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Installing PyLith

Download from geodynamics.org of copy from CDROM

Recommend copying PyLith and ParaView from CDROM with INSTALL
files.

Examples are in src/pylith/examples.
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