
PyLith

Brad Aagaard, Charles Williams, Matthew Knepley,
Sue Kientz and Leif Strand

May 12, 2009



PyLith

What is it good for?

• Elasticity problems where geometry does not change significantly

• Quasi-static crustal deformation

• Strain accumulation associated with interseismic deformation
• Post-seismic relaxation of the crust
• Volcanic deformation associated with magma chambers and/or

dikes

• Dynamic rupture and wave propagation

• Kinematic (prescribed) earthquake ruptures
• Local/regional ground-motion modeling

1



Crustal Deformation Modeling

Overview of workflow for typical research problem

2



Features in PyLith 1.3

• Spatial dimensions: 1-D, 2-D, or 3-D

• Time integration schemes

• Implicit time stepping for quasi-static problems
• Explicit time stepping for dynamic problems

• Bulk constitutive models

• Elastic model (1-D, 2-D, and 3-D)
• Linear and Generalized Maxwell viscoelastic models (3-D)

• Boundary and interface conditions

• Dirichlet (prescribed displacement and velocity) boundary conditions
• Neumann (traction) boundary conditions
• Absorbing boundary conditions
• Kinematic (prescribed slip) fault interfaces w/multiple ruptures
• Gravitational body forces

3



Features in PyLith 1.3 (cont.)

• Automatic and user-controlled time stepping

• Ability to specify initial stress state

• Importing meshes

• LaGriT: GMV/Pset
• CUBIT: Exodus II
• ASCII: PyLith mesh ASCII format (intended for toy problems only)

• Output: VTK files

• Solution over volume
• Solution over surface boundary
• State variables (e.g., stress and strain) for each material
• Fault information (e.g., slip and tractions)

4



PyLith 1.x: Planned Releases

Current productivity is about 2 feature releases per year

• PyLith 1.4: June 2009

• Power-law viscoelastic rheology and PETSc nonlinear solvers
• Ability to specify initial stress, strain, and state variables
• Automatic, transparent nondimensionalization
• Use SWIG for Python/C++ interface

• PyLith 1.5: anticipate release in Fall 2009

• Fault constitutive behavior with several widely used friction models

• PyLith 1.6: anticipate release in Spring/Summer 2010

• Time dependent boundary conditions
• Large deformations and finite strain

• PyLith 1.7: Automation of 4-D Green’s functions

• PyLith 1.8: Coupling of quasi-static and dynamic simulations
5



Motivation for Developing PyLith

• Available modeling codes

• rarely solve the problem you want to solve
• are often poorly documented
• may not work correctly

• Current research demands larger, more complex simulations

• Want to avoid multiple, incompatible versions of the same code

6



PyLith Design Objective

Want a code developed for and by the community

• Modular

• Users can swap modules to run the problem of interest

• Scalable

• Code runs on one to a thousand processors efficiently

• Extensible

• Expert users can add functionality to solve their problem without
polluting main code

7



PyLith is a Community Code

Success of code depends on community participation

• End-users (anyone who uses the code)

• Help define and prioritize features that should be added
• Report bugs/problems and suggest improvements

• Expert users

• Help test alpha versions of releases
• Run benchmarks and report results
• Contribute meshing and visualization examples to documentation
• Add features following template (e.g., constitutive models)

• Developer

• Define development strategy
• Implement new features and tests
• Write documentation

8



PyLith Design: Focus on Geodynamics

Leverage packages developed by computational scientists

PyLithPyLith

PyLithPETSc

PyLithPyre PyLithSieve PyLithProj.4 PyLithFIAT

PyLithnumpy

PyLithMPI BLAS/LAPACK PyLithboost

9



PyLith Design: Code Architecture

Flexible and modular with good performance

• Top-level code written in Python

• Expressive, high-level, object-oriented language
• Dynamic typing allows adding additional modules at runtime
• Convenient scripting

• Low-level code written in C++

• Compiled (fast execution), object oriented language

• Bindings to glue Python & C++ together

• Pyrex/pyrexembed generate C code for calling C++ from Python

10



PyLith Design

Tests, tests, and more tests (>1100 in all)

• Create tests for nearly every function during development

• Remove most bugs during initial implementation
• Isolate and expose bugs at origin

• Create new tests to expose bugs reported

• Prevent bugs from reoccurring

• Rerun tests whenever code is changed

• Allows optimization of performance with quality control
• Code continually improves

11



Example of Automated Building and Testing

Test written to expose bug, buildbot shows tests fail

12



Automated Building and Testing

Bug is fixed, buildbot shows tests pass

13



Implementation: Finite-Element Data Structures

Use Sieve for storage and manipulating mesh information

• PyLith makes only a few MPI calls

• Data structures are independent of basis functions and reference
cells

• Same code for many cell shapes and types
• Physics implementation limits code, not data structures

• Sieve routines force adhering to finite-element formulation

• Do not have access to underlying storage
• Manipulations must be done using Sieve interface
• Only valid finite-element manipulation is allowed

14



Implementation: Fault Interfaces

Use cohesive cells to control fault behavior

Original Mesh Mesh with Cohesive Cell

0

Exploded view of meshes

4

5

6622

31

0

3 7 7

4620

571 31 3 5

420

1 3 3 5

422

15



Kinematic (prescribed) slip earthquake ruptures

Use Lagrange multipliers to specify slip

• System without cohesive cells

A~u = ~b

• System with cohesive cells

(
A CT

C 0

)(
~u
~L

)
=

(
~b
~D

)

• System with cohesive cells & conditioning

(
A aCT

C 0

)(
~u
1
a
~L

)
=

(
~b
~D

)

16



Implementing Fault Slip with Lagrange multipliers

• Advantages

• Fault implementation is local to cohesive cell
• Solution includes forces generating slip (Lagrange multipliers)
• Retains block structure of matrix (same number of DOF per vertex)
• Offsets in mesh mimic slip on natural faults

• Disadvantages

• Conditioned matrix is non-symmetric
• Mixes displacements and forces in solution

17



Benchmarking PyLith

Simulation closely matches analytical solution during 10th eq cycle

0 2 4 6 8 10
Dist. from fault / Elastic thickness

0.0

0.1

0.2

0.3

0.4

0.5

D
is
p
.
/
C
o
s
e
is
m
ic
D
is
p
.

t=0.05

t=0.25

t=0.50

t=0.75

t=0.95analytic

simulation

18



Running PyLith

Ingredients

• Simulation parameters

• Finite-element mesh

• Mesh exported from LaGriT
• Mesh exported from CUBIT
• Mesh constructed by hand (PyLith mesh ASCII format)

• Spatial databases for physical properties, boundary conditions, and
rupture parameters

• SCEC CVM-H, USGS Bay Area Velocity model, or simple ASCII
files

• Independent of discretization scheme and size

19



Useful Tips/Tricks

• Command line arguments

• --help
• --help-components
• --help-properties
• --petsc.start in debugger (run in xterm)
• --nodes=N (to run on N processors on local machine)

• PyLith User Manual

• CIG Short-Term Tectonics mailing list

• cig-short@geodynamics.org

• CIG bug tracking system

• http://www.geodynamics.org/roundup

20



Crustal Deformation Modeling

Overview of workflow for typical research problem

21



Installing PyLith

Download from geodynamics.org of copy from CDROM

Recommend copying PyLith and ParaView from CDROM with INSTALL
files.

Examples are in src/pylith/examples.

22


	PyLith
	PyLith
	Crustal Deformation Modeling
	Features in PyLith 1.3
	Features in PyLith 1.3 (cont.)
	PyLith 1.x: Planned Releases
	Motivation for Developing PyLith
	PyLith Design Objective
	PyLith is a Community Code
	PyLith Design: Focus on Geodynamics
	PyLith Design: Code Architecture
	PyLith Design
	Example of Automated Building and Testing
	Automated Building and Testing
	Implementation: Finite-Element Data Structures
	Implementation: Fault Interfaces
	Kinematic (prescribed) slip earthquake ruptures
	Implementing Fault Slip with Lagrange multipliers
	Benchmarking PyLith
	Running PyLith
	Useful Tips/Tricks
	Crustal Deformation Modeling
	Installing PyLith

