Deformation due to strike-slip
faults: Theory-and
observations

Individual earthquakes

Modeling of multiple earthquake cycles on
fault systems



Individual events

o Coseismic (static/dynamic?)
» Postseismic
e Interseismic

What essential physics and what constitutive
laws should the models incorporate?



3-D variations in elastic properties
Non-linear visco-elasticity?
Plasticity?

Poro-elasticity?

Gravity

Pre-stress

Topography?

Rate-and-state friction
Temperature-dependent rheology?



M7.3 Landers, 1992

M7.1 Hector Mine, 1999
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Southern San Andreas Fault
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(also, see LePichon et
G,/G,<0.4 4l JGR 2005).
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Evidence for macroscopic low rigidity
zones around major faults

e Seismic: Li et al., 1994;
Eberhart-Phillips et al. 1995;
Thurber et al., 1997; McGuire
and Ben-Zion, 2005

* Field: Johnson et al., 1997; ameee N
Chester and Chester, 1998; vGil'S) r v\"-"f-‘\ “Dagnage zon
Wilson et al. 2005 |
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Origin of compliant zones

: emiai N Stresses at
the rupture f =l P sub-parallel

Geometric c
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How much shear strain 1s accommodated off the
“primary slip surface”?

Dependence on a cumulative fault slip?
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Shallow coseismic slip deficit
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Proposed mechanisms of
post-seismic deformation:

Afterslip on or below the seismic rupture
(Shen et al., 1993; Savage and Svare, 1997)

Poro-elastic rebound (Peltzer et al., 1996;
1998; Jonsson et al., 2003)

Visco-elastic relaxation (Deng et al., 1998;
Pollitz et al., 2000; Freed and Burgmann,
2004)

Combination of mechanisms (Masterlark
and Wang, 2002; Fialko, 2004)



How localized Is postseismic
deformation in the dtk
substrate?




Shear stress




Differential stress A

Depth

Mohr-Coulomb
/ failure envelope

~__ Visco-plas_tic (?)
deformation




Differential stress A

Depth

brittle

ductile

Mohr-Coulomb
/ failure envelope

~_ Visco-plas_tic (?)
deformation



Differential stress A

Depth

Mohr-Coulomb
/ failure envelope

brittle

ductile

~_ Visco-plasfcic (?)
deformation

e~A"



o'g. Initial (interseismic) stress state
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\B@Fmodels: Vertical

disblacements







Power-law rheology (n=3.5)
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~ Horizontal displacements
alone: are they a good
discriminant?




Pollitz, 1997; Hearn, 2003: Fialko, 2004
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 Time dependence and
“permanent” postseismic
deformation




Horizontal Displacement (mm)

Freed and Burgmann, Nature 2004
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Savage et al., JGR 2003; Fialko, JGR 2004
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Visco-elastic relaxation




Long-term deformation
(multiple faults, multiple eq
cycles) :

Long-term vs short-term rheology

Large strains
— Elastic
— Inelastic

Treatment of plasticity (localization)
“Pre-stress” -> ambient stress

Forcing (Paleoseismicity? Spontaneous
rupture nucleation?)



V 6.6 (as of May 2006)
HABAQUS

ABAQUS/AMS

e ABAQUS/AMS (Automatic Multi-level Substructuring) is an add-on product that provides
significant performance advantages for natural frequency extraction simulations, especially

for large models and the extraction of large numbers of eigenmodes. Benchmarks indicate

that the use of ABAQUS/AMS can result in 10-25 times faster turnaround times compared to
the default Lanczos method.

Supported Platforms

ABAQUS Version 6.6-1 supports the platforms listed in the table below. As usual, ABAQUS probably
will run on later operating systems, but not on earlier ones.

HLULTWLHC Iy me?f ‘ta;:ttizgrﬁ"}’::::ion) GAE | Viewer Profnets
Windows/x86-32 Windows XP Yes Yes Yes
Linux/x86-32 SuSE Linux 8.2 Yes Yes Yes
HP-UX/Itanium HP-UX B.11.22 No No Yes
Linux/Itanium SuSE Einux Enterprise Server 9.0 | No No Yes
Linux/x86-64 SuSE 9.0 Yes Yes Yes

ABAQUS Version 6.6 will be released on additional platforms in future maintenance releases. Please
g0 to www . abaqus . com>Support & Services->Technical Support->Systems Information>

ABAQUS Version 6.6 Supported Platforms and Products for a complete set of supported platform,
chipset, and operating system details.




Key Features of Version 6.6-1
Some of the key features of Version 6.6-1 follow:

Adaptive remeshing

The quality of ABAQUS/Standard simulation results can be improved for situations when
you are unsure how refined the mesh needs to be to reach a desired level of accuracy. This
capability utilizes the close interaction of ABAQUS/Standard and ABAQUS/CAE to arrive
iteratively at a mesh that improves solution accuracy for a wide range of applications.

Visualization enhancements
e Numerous enhancements are introduced to improve postprocessing capabilities, particularly

for complex nonlinear simulations.

— Animation functionality is extended in several ways, including synchronizing animations
and overlay of simulation results with imported “movies,” such as an experimental test.

— X-Yplots can now be animated, including synchronization with other animated
viewports.

— Plot states are now available. Plot states enable multiple plot types and options to be
invoked in a single viewport with a streamlined and unified user interface.

Fracture and failure modeling enhancements

A damage model for fiber-reinforced composite materials is available in ABAQUS/Standard
and supported in ABAQUS/CAE, complementing the existing cohesive element capabilities
and optional VCCT technology already available in ABAQUS.

Cohesive elements can be used in import simulations to transfer analysis results between
ABAQUS/Standard and ABAQUS/Explicit, as well as between two ABAQUS/Standard
simulations.

Connector damage and failure effects can now be defined in ABAQUS/Standard (as already
available in ABAQUS/Explicit). This provides for realistic modeling of damage and failure
in discrete connections, such as spot welds and rivets.

The Johnson-Cook criterion for damage initiation in ductile metals is now available within
the general framework of progressive damage and failure in ABAQUS/Explicit.

Material damage initiation criteria and damage evolution can now be defined in
ABAQUS/CAE.



Improved performance of ABAQUS analysis products

* Both serial and parallel performance is improved significantly in ABAQUS/Explicit. For
certain classes of large models ABAQUS/Explicit can now effectively use up to 16-32
CPUs.

¢ A distributed memory parallel (DMP) direct sparse solver is introduced in
ABAQUS/Standard With this new functiona]ity, it is now possible for large classes of
problems in both ABAQUS/Standard and ABAQUS/Expiicit to run on popuiar distributed
memory cluster systems.

 The quasi-Newton solution technique in ABAQUS/Standard is enhanced to provide
substantial performance gains for certain types of nonlinear static and dynamic simulations.

* Support for the parallel execution of the element operations in ABAQUS/Standard is
extended to include more procedure types.

Contact enhancements

e Several enhancements are 1mplemented to improve the convergence and the accuracy of
simulations involving contact in ABAQUS/Standard.

— A penalty method for enforcing contact conditions is available, providing for more
efficient convergence behavior in many cases.

— A true surface-to-surface formulation for finite-sliding contact is available, providing
better stress accuracy, along with the ability to account easily for surface thicknesses i in
contact (such as shell or membrane tlnckness)

- Anew a}}l.uuabh is available to deal with severe discontinuity iterations (SDIs), those
iterations in which the contact state at one or more points changes during the course of
the iteration. Severe discontinuities can be converted automatically to force residuals,
potentially improving convergence behavior for simulations involving contact
“chattering” and those in which a large number of SDIs prev1ously have been required to
settle the contact conditions.

» Contact capabilities are also enhanced in ABAQUS/Explicit.

— The edge-to-edge feature of the general contact capability is now parallelized, enabling
more effective use of multiple CPUs for parallel execution and for reducing overall
turnaround time.

— Analytical rigid surfaces can now be used in conjunction with general contact.

Model preprocessing enhancements in ABAQUS/CAE

e The Sketch module contains many enhancements to the sketch creation and editing tools,

including the implementation of a constraint manager, which provides for the specification of
nammetnr relationshins between geometric entities

arametric relationships between geometric entities.

. Several previous restrictions associated with virtual topology are eliminated. As a result, the
full suite of geometric and mesh creation operations can be applied to parts that include
virtual topology.

® The swept meshing technique is generalized to extend its applicability to part geometries and
topologies that previously could be meshed only with tetrahedral elements or through the
extensive use of partitions.
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mFIector Mine deformation
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Conclusions

Given realistic rheologies, visco-elastic relaxation
produces surface deformation that is very similar to
that due to afterslip

Post-seismic deformation transients following
Landers and HM earthquakes lasted several years

The Kkinetics of surface deformation measuredwith
INSAR Is consistent with hydraulic diffusivity of
0.1-1m?/s; pore fluids are likely present throughout
the seismogenic layer

The post-seismic deformation observed after
Landers and HM egs Is complex; a combination of
“afterslip” and poro-elastic relaxation is required to
explain the data



Savage et al., JGR 2003; Fialko, JGR 2004
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