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Main Objective of Postseismic Studies

Sort out the relative contributions of viscoelastic
relaxation, afterslip, and poroelastic rebound

Understand the constitutive relations that
controls each mechanism

Main Challenges

Inferring power-law flow
Isolating transient displacements

Developing finite element meshes of sufficient
complexity to calculate interseismic stresses and test
candidate rheologies

Inferring coseismic slip based on a layered Earth
Sort out mechanism contributions

Simulating stress-driven afterslip in shallow regions



The Importance of Power-law Rheology
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Laboratory flow laws suggest n = 3-4

in the lower crust and upper mantle

» The viscosity of the lower crust and
upper mantle will vary spatially and

temporally following transient loads.

 Viscosity will vary due to different
loading events.

» Effective viscosities inferred from
postseismic or glacial unloading
events have limited utility.

» Power-law rheology could explain
short-term weakness and long-term
strength.
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Inferred viscosity structure following
the 2002 M7.9 Denali, Alaska quake.




Two Ways to Infer Power-law Rheology
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Data Acquisition

First challenge: Separate out tectonic from non-tectonic contributions
(continuous GPS is best).
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Data Acquisition

Second Challenge: Separate out transient from steady-state contributions.
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Data Acquisition

Cumulative displacements
following the Denali quake.
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Transient time-series
displacements and velocities
following the 2002 Denali quake.
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Finite Element Models

Mesh geometry needs to enable
simulation of the rupture and the
regional tectonics

Brick elements are best for depth-
dependent rheologies and to view
mesh interior.

2002 Denali Mesh
Captures rupture surface in detail

Capture long-term block rotation

Ignores subduction zone
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Mesh of the Chilean Margin
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Shear Modulus Increases With Depth

Denali rupture surface
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Assuming a half-space instead of a layered Earth inversion of GPS
data has a significant influence on the inferred slip distribution

From half-space

e From layered earth

forward modeling
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Half-space inversions: « Underpredict seismic moment
» Underpredict coseismic slip at depth
» Underpredict coseismic stress changes in the lower crust



Consequences of assuming a half-space elastic model of a layered Earth
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Additional reference: Hearn, E. H. and R. Blirgmann, The effect of elastic layering on inversions of
GPS data for coseismic slip and resulting stress changes: Strike-slip earthquakes, Bull. Seismol.
Soc. Am., 95, 1637-1653, 2005.



Sorting out viscoelastic flow, afterslip, and
poroelastic contributions to postseismic deformation

General problem: All mechanisms can lead to similar postseismic
lateral surface displacements.
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Sorting out viscoelastic flow, afterslip, and poroelastic
contributions to postseismic deformation

» Best approach: Use postseismic vertical displacements (very sensitive to
depth of flow) in conjunction with lateral displacements.

» Unfortunately, vertical constraints are not always available or
appropriately located.
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Next approach: Utilize geophysical data that suggest that deep (>60 km) flow is not
likely to be afterslip, thus far-field displacements (driven by deep flow) are likely
induced by viscoelastic flow in the mantle (70-80% in this case).
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Far-field Time-Series Best Fit by Power-law Flow in the Upper Mantle

—0mn_, GPS Observed ACENA =
— > Power-law model —— GPS Observed =—— Newtonian Model Power-law Model

JFAIR

Velocity (mml/yr)

HLIIRC EAS'!I' . HURC NORTH
T ; : T i T

Velocity (mm/yr)

Displacement (mm) Displacement (mm) Displacement (mm)

=
E
2 ]
§ 50 _GNAAEAST __ |--.-..GNAANORTH ......
& T T T L T
g —
ke -
i =
2 £
s £
= >
g B
=% [=]
=) E o
10 CLGO EAST CLGO NORTH > Qe CLGO EAST -------- CLGO NORTH
- = I £ I 3 I J I i I d ¥ I Y I % | ¥ I 4 I
1 2 3 4 5 0 1 2 0 1 2 0 1 2 0 1 2
Time After Quake (yrs) Time After Quake (yrs) Time After Quake (yrs) Time After Quake (yrs)

Lower Crustal Flow Exponent, n




Inferred Multiple Mechanism Model to Explain
Far- and Near-Field Displacements
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Near-field Time-Series Best Fit by Power-law Flow in the
Upper Mantle Plus Afterslip and Poroelastic Rebound
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Challenges in Modeling Stress Driven Afterslip

* Need a good frictional element

o Difficult with a finite element formulation to model stress driven
afterslip within the coseismic slip zone.

* Requires an accurate representation of deep coseismic slip

» Knowledge of prequake stress levels is important in the shallow,
stronger area - though this is very difficult to constrain.

g i :. .; = amaEs P - ~_.,i.||_|___i_ - T
£ '
= Observed LY o Mmielel L L | [ T P L |
== Stress driven o Ll | N —
50 mm deep slip model L [ T [
‘ 10011 1 Tl = )
1‘ 120 | | | e

Stress-Driven Afterslip (m T T
| | [ I h
10 16 .22 .28 .34 .40 [ [ 1T

Model of stress driven deep afterslip




Resist The Temptation To Over-Simplify

* Power-law flow

* Prequake tectonics

e Layered earth
 Temperature dependence
e Multi-mechanism models
» Stress-driven afterslip



Uplift Patterns Cannot Readily Help to
Differentiate Newtonian from Power-law Flow
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