GeoFEST: Adaptive Meshing, Portal use

Jay Parker, Gregory Lyzenga,

(contributions from

Margaret Glasscoe, Andrea Donnellan)

Jet Propulsion Laboratory, California Institute of Technology

UCDAVIS

GeoFEST contributors

- Supported by the Computational Technologies Program of NASA's Earth Science Technology Office, <u>http://ct-esto.jpl.nasa.gov/</u>
- Project Principal Investigator -- Andrea Donnellan
- Management and Coordination -- Michele Judd
- guiVISCO object composer and mesher Jin-fa Lee (Ohio State)
- PYRAMID, MPI Integration -- Charles Norton, Edwin Tisdale
- Validation -- Cinzia Zuffada
- Visualization -- Peggy Li
- Web Portal -- Marlon Pierce (U. of Indiana)

Why Mesh Refinement

- Why Stress/Strain, why Finite Elements
- Southern California settings, flexible meshing
- Parallel performance scaling for unstructured elements
- Cost of various mesh strategies
- Validation of fault stepover, refinement with strain energy

Why Stress/strain finite elements

Earth Science is becoming pattern of *Monitor-Model-Assess-Predict*.New missions will generate 10 to 20 TB per week.

--Earth Science Enterprise Computational Technology Requirements Workshop, NASA, 2002

Scales of earthquake sources span *eight* orders of magnitude (~fractal)
Optimal use of data requires fit to a model
Finite element mechanics fills key niche:

--couples to other methods (BE, ...)
--approximate parameterizations

(damage rheology, ...)

Los Angeles Basin Compression

Demonstrate technology:

- Parallel AMR,
- >16 million finite elements,
- > 1000 time steps

Jointly match data:

- SCIGN velocity features
- Known fault rates
- Known mountain growth
 - --In progress.

JPL

Landers Event

Vertical Faults, Finite Element Nodes

Demonstrate technology:

- Parallel AMR,
- >10 million finite elements,
- > 1000 time steps

Simulate event:

- Stress transfer
- Match GPS-observed regional relaxation

What is GeoFEST

Geophysical Finite Element Simulation Tool

- Finite elements for elastic/viscoelastic stress, strain
- Unstructured 3-D meshes, material variations
- Fault dislocations and geophysical sources

 stress-triggered fault slip non-Newtonian viscosity gravity, buoyancy

 Support/development for

-parallel computing -adaptive mesh refinement -visualization -web computing

GeoFEST Equations

Elastic equilibrium

$$\sigma_{ij,j} + f_i = 0,$$

Viscoelastic relaxation

$$\frac{\partial \sigma_{ij}}{\partial t} = c_{ijkl} \left(\frac{\varepsilon_{kl}}{\partial t} - \frac{\varepsilon_{kl}^{vp}}{\partial t} \right),$$

Isotropic material

$$c_{ijkl} = \mu(x) \left(\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk} \right) + \lambda(x) \delta_{ij} \delta_{kl},$$

Viscoplastic strain rate

$$\frac{\partial \varepsilon_{ij}^{vp}}{\partial t} = \beta_{ij} (\sigma_{ij}),$$

LICDAVIS

... so materials have lame parameters, viscosity, and body force; Recently added buoyancy, surface tractions.

Two modes for using GeoFEST

QuakeSim Web Portal

- + Can do full projects in browser
- + No code port required
- + Runs remote jobs simply

OpenChannel Download

- + GeoFEST, Pyramid full source
- + Can debug at any level
- + Runs on many platforms

- Under development

- Compiler required

GeoFEST Problem Definition

CT Project Milestones, Challenges

Baseline milestone (8/02):

- 50,000 elements, 1000 time steps
- Sequential execution in 13.8 hours

Parallel milestone (9/03):

- 1.25 million elements, 1000 time steps
- 64 processor Linux cluster in < 13.8 hours (attained 2.8 hours)

Final milestone (nominally 6/04):

- •16 million elements, 1000 time steps
- ~100's processor cluster in < 13.8 hours
- Demonstrate adaptive mesh refinement

The challenge: how costs scale

- File size: ~21 * Elements (compressed ASCII)
- Transfer time: ~3e-6 s * Elements (local network)
- Preprocessing: ~Elements
- Cluster memory: ~1e4 bytes*Elements
- Solve time:
 ~steps*(Elements)^{4/3}/Processors

NASA

Pyramid Parallel Unstructured Adaptive Mesh Refinement Library

- A FORTRAN90-based software library
- For parallel unstructured adaptive mesh refinement
- Supports large-scale simulation applications with complex geometries.
- Manages partition of element domains on processors.
- With GeoFEST, solution-driven mesh improvement
- GeoFEST not using dynamic mesh modification

Los Angeles Basin: Mesh, Y, Z solutions

Parallel GeoFEST: Scaling

How many elements

Consider a L=500 (cube) domain, with a fault edge (finest feature l = 1km)

(motivated by LA Basin simulation geometry, shown here)

Some possible approaches:

- Fine density mesh everywhere: Elements = $5(L/l)^3 = 725M$.
- Heuristic (roughly what we use today):--elements grow by "A" with distance from line.Nearest edge, need $\sim 20^*(L/l)$ Next, (to A km) another $\sim 20^*(L/(Al))$ to 2A, another $\sim 20^*(L/(2Al))$... Geometric progression, so (optimistically)Elements $\sim 20(L/l)A/(A-1) \sim 30,000$ (for A=1.5).
- Use **strain energy** from scratch solution to direct PAMR. Performance similar to heuristic, but *physics based*, *automatic*, *avoids errors*.

CDAVIS

Adaptive Meshing (in progress)

Initial surface mesh (center portion):

- Aim to use PYRAMID parallel library
 (NASA ESTO CT Project)
- · Changes mesh after import to cluster
- Strain energy guides 3D refinement

Detailed Validation GeoFEST vs. Analytic Fault Stepöver

GeoFEST Status

<u>Summary</u>

- Handles millions of elements in MPI code
- Heuristic mesher can vary density with high generality: High near fault edges, very low to extend to far boundaries
- PYRAMID integration works at first level (partition management) and generates quality refined meshes. Integration in progress.
- Strain Energy refinement converges to correct solution.
- Validation with known solutions indicates 1-2 iterations OK.
- Visit us at http://quakesim.jpl.nasa.gov

Background: 10M Element Landers coseismic uplift coded as radar phase, 256 Processors of SGI "Cosmos" system at JPL

- What is GeoFEST?
 - Geophysical Finite Element Simulation Tool
 - GeoFEST solves solid mechanics forward models with these characteristics:
 - 2-D or 3-D irregular domains
 - 1-D, 2-D or 3-D displacement fields
 - Static elastic or time-evolving viscoelastic problems
 - Driven by faults, boundary conditions or distributed loads
 - GeoFEST runs in a variety of computing environments:
 - UNIX workstations (including LINUX, Mac OS X, etc.)
 - Web portal environment
 - Parallel cluster/supercomputer environment

- GeoFEST Documentation and Learning Materials
 - GeoFEST User's Guide
 - GeoFEST Introductory web page

$\underline{\text{Geo}} \text{physical } \underline{F} \text{inite } \underline{E} \text{lement } \underline{S} \text{imulation} \\ \text{Tool}$

User's Guide

rev 5: 04/01/04

Andrea Donnellan (Andrea.Donnellan@jpl.nasa.gov) Greg Lyzenga (Gregory.A.Lyzenga@jpl.nasa.gov) Jay Parker (Jay.W.Parker@jpl.nasa.gov) Charles Norton (Charles.Norton@jpl.nasa.gov) Maggi Glasscoe (Maggi.Glasscoe@jpl.nasa.gov) Teresa Baker (Teresa.S.Baker@jpl.nasa.gov)

- Steps for running GeoFEST:
 - Create grid geometry
 - Enter boundary conditions, faults
 - Enter material properties, time stepping
 - Run problem
 - Plot, visualize results

- Using the web portal environment to create and run a typical 3-dimensional model
 - Use web portal to draft domain layers and boundaries
 - Using portal, add fault(s) to domain
 - Generate grid points and elements with desired refinement
 - Provide supplemental information on boundary conditions, material properties, time stepping, etc.
 - Submit run to GeoFEST for execution
 - Examine and visualize results

• Select the GeoFEST code in portal

SERVO Job Submit	🗖 🗖 🖉 🖾 🔁
Co	de Selection Menu
Please select a code and host machine from the foll Selection" button at the bottom of the page.	lowing list of applications. When you have made your choice, click the "Make
Disloc	
Simplex	
GeoFEST_Plus_Viz	
VirtualCalifornia	
MeshGenerator	
Geofit	
RDAHMM	Salaat aada
Slider	Select code
PatternInformatics	
GeoFEST2	
Description: Three-dimensional viscoelastic finite	element model for calculating nodal displacements and tractions. Allows for
danube ucs indiana edu	an properties, and body forces.
GeneticAlgorithm	Select host
Karhunen_Loeve	
GeoFEST_ParVox	
GeoFEST_Adaptive	
Make Selection	
Cancel	
Main Home	

Create the desired geometry •

Project Input

Check the generated geometry

• After performing initial meshing of domain

SERVO Job Submit	🖉 🖻 🛛 🖬 🗖
efine Mesh	
r initial mesh has been generated. You may now iteratively refine it by pressing the "Refine" button.	
sh Refine Limit: 100	
DIST[8] = 263 DIST[0] = 149	\sim
DTAL POINTS 350 TETRAHEDRA 1407	
efine Wavelength Points 0 ne Worst Q 3.502845e-02 AVGQ 6.865582e-01	
ne Worst Q 3.468963e-02 AVGQ 6.863951e-01	
DIST[0] = 2 $DIST[1] = 5$	
D(ST[2] = 38 D(ST[3] = 55 D(ST[4] = 122	
DIST[6] = 132 DIST[5] = 142 DIST[6] = 283	
DIST[7] = 340 DIST[8] = 260	\cap
DIST[9] = 149 DTAL POINTS 350 TETRAHEDRA 1406	
k "Define Mach" to launch the Mach Definer. The Mach Definer may take several minutes to complete	
k "View Messages" to view the Mesh Refiner's output messages.	
efine Mesh View Messages	Look at
ave Mesh View Mesh	
	resulting
Asia Home	mesh
nam home	mesn

• Viewing initial meshing of domain

UCDAVIS

University of California, Irvine

JP

• Requesting refined meshing of domain

SERVO Job Submit		
lefine Mesh		
our initial mesh has been generated. You may now iteratively refine it by pressing	the "Refine" button.	
esh Refine Limit: 1	Status of refinement	
agfault.pl Model1sm.node Model1sm.tetra SAFbottom.flt 1 Model1sm.index number dip(o) strike(o) slip(m) rake(o) length(km)		
width(km) depth(km) 1.0 52 0 5 90	progress	
opening Model1sm.node		
Reading 621 nodes. Opening Model1sm.tetra		
Reading 2817 tets.		
APOLLO Modellsm 1.0		
APOLLO Model1sm 1.0		
Mesh Refine 0 / 207 Tetra 2817 Tri 5851 Mesh Refine 100 / 207 Tetra 3331 Tri 6879		
Mesh Refine 200 / 207 Tetra 3853 Tri 7924		
The Worst Q 1.911663e–02 AVGQ 5.886470e–01 The Worst Q 1.635721e–01 AVGQ 6.201361e–01		
The Worst Q 1.576477e-01 AVGQ 6.208042e-01 The Worst Q 1.576477e-01 AVGQ 6.208042e-01	A V	
ick "View Messages" to view the Mesh Refiner's output messages.	I minutes to complete.	
	merrace	
Refine Mesh (View Messages)	. 1	
Save Mach View Mach Cancel	controls	
Save mesti view mesti Caricel		
Main Home		

• Viewing refined meshing of domain

Running prepared GeoFEST model

SERVO Job Submit				1	
nput and Output File N	ames				
nput File Name:	Model1sm.inp				
Output File Name:	Model1sm.out		Enter ac	ditional run	
.og File Name:	Model1sm.log		Linci a		
mail Address:	Teresa.Baker@jpl.nasa.g	ov	noromot	ore and	
		•			
n put Parameters	s 3 top bc Free	Node BC Values: 0.0.0.0.1	houndar	v conditions	
number_space_aintension	3 east br Lock	d Node : BC Values: 0.0.0.0.1		y conditions	
nrates	0 west bc Lock	d Node BC Values: 0.0.0.1	-1		
shape flag	1 north bc Lock	d Node BC Values: 0 0. 0. 0. 1			
solver flag	2 south bc Locke	d Node BC Values: 0 0. 0. 0. 1.			
number time aroups	1 bottom bc Locke	d Node BC Values: 0 0. 0. 1.			
eform_steps					
backup_steps	5000	ers and Formatting			
ault_interval	Reporting Nodes: 3000.0				
end_time	1.0 Reporting Elemen	ts: All 🗘			
llpha	1.0	Steps 🗧			
ime_step	0.5	imes 20			
	Print Times Interv				
	Checkpoint File:				
		No Save			
Main Home		— Run Ge	oFEST		
9L	L 1		USC	UCDAVIS	UCIrvine University of California. Irvir

Monitoring status of GeoFEST job execution

- Accessing completed GeoFEST results files
- (Follow "Archived Data" link)

SERVO Job S	ubmit				P ⊠ _ □
rchived Dat	ta				
u have the foll	lowing archived data files	. Click the link to download the	file.		
roject Name	Storage Host	Creation Date	Data File		
lodel1sm	danube.ucs.indiana.edu	Wed Jun 23 17:46:20 EST 200	04 Model1sm.inp	Model1sm.out Model1sm.log	
tain Hama				1	
hain Home					
	ASCI	input file			
		1			
				ASCII output file	

• Plotting, visualization of results via web portal

University of California, Irvine

Questions?

Greg Lyzenga (Gregory.A.Lyzenga@jpl.nasa.gov) Jay Parker (Jay.W.Parker@jpl.nasa.gov) Marlon Pierce (mpierce@cs.indiana.edu)

Supported by the Computational Technologies Program of NASA's Earth Science Technology Office

UCDAVIS

