Geologic Assessment Methodology for Underground Targets (GAMUT)

Carl Gable and David Coblentz LANL CIG Workshop 27 June 2006

Outline

- The GAMUT concept, process, and general framework
- Model development Divine Strake example
- Red vs Blue Models
- Summary

The GAMUT Framework

Develop 3-d geologic model for high fidelity shock propagation modeling

Motivation: Current DOD/DOE geologic models are "half spaces"

Recognition that "geology matters" – structure has a primary influence on shock wave propagation

<u>Criteria</u>

<u>Purpose</u>

Scripted, documented, archived

Common output file format (ACIS)

Reproducible results

Compatibility w/other software (CUBIT, ABAQUS, IMEA)

Inexpensive, portable tools

ARC-Info, RHINO3d, EarthVision

Schematic of the GAMUT Process

Los Alamos

GAMUT Example: Divine Strake at NTS

U16b Facility -- Aerial Photo

Converting U16b Red Team Information to 3d Model

Tunnel Geometry

Imagery

Topography

Geology/Stratigraphy

3d Model

GAMUT Model

Red Model:

Flat Geologic Layers Simplified Geology No Faults/Fractures

Blue Model:

Complex Geologic Layers Include Faults Include Fractures

1. Convert DEM (1m resolution - ~60,000 points) to a NURBS surface

2. Clip volume with NURBS surface

3. Extend volume to depth

4. Create stratigraphic layers

5. Rotate the stratigraphy to align with bedding strike

Topography and basis subsurface block shown with stratigraphy

• Los Alamos

7. Clip/Trim dipping layer with surface topography.

Final Stratigraphy

8. Add Tunnel

Rhino3d Tunnel Hoops Generated with GEN.F

Rhino3d Tunnel Surface – produced by lofting through hoops

GAMUT DS Red– Final Model

"Red Model" :

- 1. Simple dipping geology
- 2. No faults or fractures

DS Blue Model

"Blue Model" Challenges:

- 1. Complex Geologic Layers
- 2. Include Faults (one major fault in DS Blue)
- 3. Include Fractures (incorporated into material models for DS Blue)

Definition of the Stratigraphy (Blue Model):

$Z_i = a(X-X_o) + b(X-X_o)^2 + c(Y-Y_o) + d(Y-Y_o)^2 + e_i$

where: Zi = the vertical coordinate of the ith bed top at horizontal position: X, Y a, b, c, d = coefficients defining the bed shape, which are the same for all beds ei = constant defining the vertical position of the ith bed X0, Y0 = constant coordinate offsets

coefficients:

 $X_o = 91.44 \text{ m}$ $Y_o = 121.92 \text{ m}$ a = 0.2607 $b = 0.000288 \text{ m}^{-1}$ c = -0.5166 $d = -0.000537 \text{ m}^{-1}$ $e_i \text{ values are tabulated in the Blue Team Report.}$

32 layers

GAMUT DS Blue Final Model

"Blue Model" :

- 1. Complex stratigraphy
- 2. One major fault included
- 3. Fracture density included in material model (not explicit geometry)

GAMUT Summary – Future Directions

- GAMUT provides a way to link site geology/facility information with Hi-Fi calculators
- The GAMUT process has been tested end-to-end for a real situation – used by 4 modeling teams for DS Blue
- LANL is developing a true FEM-DEM modeling capability to facilitate realistic fault/fracture modeling.
- DS "Green" model is a work in progress.

