FEMs of dislocations within a subduction zone

Simulating complex structures with both
forward and inverse models
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Virtual field trips via FEMs

Detformation of big subduction quakes
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Deformation models

observed deformation <> causes of deformation
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Forward Model

Predict deformation caused by dislocation

analytical solution
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— geometry
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elasto-static behavior
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Inverse Model
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Estimate dislocation to account for observed deformation ¢ Pef™

forward model

deformation surface

model
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slip displacement
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inverse model

st =(GTG| 6T d

1995 M8 Jalisco quake



Complicated Deformation Pattern

Array of dislocation patches

. d = s G
deformation surface J I =1 \
_ ‘\ unit impulse
displacement response function
(geometry)
slip
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Matrix Assembly

Array of dislocation patches
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e we can solve for s using
linear matrix inverse methods
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Solution Constraints

Laplacian operator — smoothing

matrix expression: G(s)=d

additional constraints: avoid large
variations between neighboring dislocations
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Solution Constraints

Laplacian operator — smoothing

matrix expression: G(s)=d

additional constraints: avoid large
variations between neighboring dislocations
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Solution Constraints

Laplacian operator — smoothing

matrix expression: G(s)=d

additional constraints: avoid large
variations between neighboring dislocations
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Solution Constraints

Laplacian operator — smoothing

matrix expression: G(s)=d

additional constraints: avoid large
variations between neighboring sources

[3 scalar, controls amount
of smoothing
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matrix expression:
forward solution
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VAN
G s =4d

N

1995 M8 Jalisco quake



Inverse Solution

Damped least-squares

recall...
matrix expression G|s =|d
— forward solution BL 0
VAN N\
Gs =d
trade-off: misfit vs roughness
AP — 0
: matrix expression “é
* inverse solution S
\ c
t : [/\T/\J-l/\_l_ N _g
est. — O
S T G'G G'd =
S B—>0

solution roughness
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Inverse Solution

Over-smoothing

recall...
matrix expression G|s=d
— forward solution BL 0)
VAN VAN
Gs=d
trade-off: misfit vs roughness
A B —> 00
" matrix expression o poor it to data
® inverse solution = smooth solution
g c
, : [/\T/\J-l/\_l_ A 2
est. — O
s¢t'=|GTG] G'd S
‘ o
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solution roughness

1995 M8 Jalisco quake



Inverse Solution

Under-smoothing

recall...
matrix expression G|s =|d
— forward solution BL 0
VAN N\
Gs=d

trade-off: misfit vs roughness

N

" matrix expression %

% inverse solution S
WA Av1A A _é good fit to data
sest.ii= [GT G] GT d 2 rough solution

o

S

B—>0

solution roughness
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Inverse Solution

Balance of fit and smoothing

recall...
matrix expression G|s =|d
— forward solution BL 0
VAN N\
Gs=d
trade-off: misfit vs roughness
AP — 0
_.__mgtrlx expression » qood fit to data
= inverse solution &
\ - smooth solution
t : [/\T/\J-l/\_l_ A _g
est. — O
S T G'G G'd =
S B—>0

solution roughness
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“Fit” Complicated Deformation Patterns

Geometric distribution of dislocation patches

deformation surface

dislocation (S )'

null substantial
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Wait a minute...

o

-v‘
“live Deform?

How well does the model represent the natural system?

analytical solution

deformation surface

& N
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. e required assumptions:
dislocation ( S)

homogeneous

B N isotropic
null substantial . P .
Poisson-solid

half-space
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Wait a minute...

How well does the model represent the natural system?

analytical solution
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Wait a minute...

#‘
“ve Deform?

How well does the model represent the natural system?

analytical solution
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Wait a minute...
-?‘

Cf N
How well does the model represent the natural system? ¢ Deform?

analytical solution
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Wait a minute...

How well does the model represent the natural system?

relief: 1000’s of m

1995 M8 Jalisco quake
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Test sensitivity to HIPSHS assumptions

Systematically relax and isolate each assumption

@ definition

Finite Element Model (FEM):
numerical model; predicts
deformation, stress, and pore
pressure
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Dislocation distribution for non-HIPSHS

FEM-generated unit impulse response functions

o

#‘
“lve Deform®

A - GPS station

node pair

\ relative displacement via

kinematic constraint equations
[Smith, 1974]
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Dislocation distributions A
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Non-HIPSHS configurations
non-HIPSHS deviations
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Sensitivity to HIPSHS assumptions
Loading a non-HIPSHS FEMs with HIPSHS loads

A — 0, not sensitive

= GHgH — H -
4= Gns Gs A — oo, sensitive
HIPSHS load \ / Forward FEM \
(inverted from GPS) (relaxed assumption)
half-space
Forward FEM
> | HIPSHS — Poisson-solid
isotropy
' i homogeneity
dislocation, m
\ Y,
dislocation, m combined

N J
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GeoSYZEMics
Sensitivity to HIPSHS assumptions aq

Loading a non-HIPSHS FEMs with HIPSHS loads “live Deform®

A — 0, not sensitive

— HeceH _ H ..
A= G"s Gs A — oo, sensitive

assumption sensitivity
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combined

ellipses are 1o uncertainty, centered on
GPS site locations

0 100 200
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Why worry about the dislocation distribution?

Dislocation drives postseismic processes

coseismic poroelastic deformation
dislocation S :

“ ‘o,“ pore pressure
stress

Y . — shear -
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viscoelastic deformation Coulomb Stress
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Rupture & Deformation
2004 M9 Sumatra-Andaman earthquake & tsunami

Eurasian
Wl e B1d1E

Indo-Australian
Plate
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GeoSYZEMics
Predicting seafloor deformation aq
o

. St 2
Changes ovetlying water column ® Defor™

b ocean surface

\ \ seafloor
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GeoSYZEMics
Predicting seafloor deformation aq
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. St 2
Changes ovetlying water column ® Defor™

b ocean surface
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Eurasian Plate

Cross-section

2004 M9 Sumatra-Andaman quake



Predicting seafloor deformation

Drives tsunami propagation models

India and
Sri Lanka

S earthquake
. deformation

2004 M9 Sumatra-Andaman quake

Sumatra &
Thailand

seafloor

Cross-section
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Predicting Seafloor Deformation

o
Yetiye Deforme

The source of the tsunami

typical deformation model
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sediments

mantle
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Predicting Seafloor Deformation

Heterogeneity & displacement
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Coming soon:

3D virtual Sumatra-Andaman subduction zone

oceanic accretionary

crust / prism
B (Y continental

crust

-
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topography & surfac

! curvature (not shown
Indo-Australian ( )

Plate
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ABAQUS: Comprehensive FEM environment
Capabilities

preprocessor

complex geometry
axisym., 2D, 3D

mechanics simulated (partial list)
elastic

poroelastic

viscoelastic (linear & nonlinear)
thermoelastic

plastjc

Itep: Step-2 Frame: 0

"H-..,‘__

scr\‘pts — inverse models

linear GF's

automated geometric perturbations

& remeshlng non-linear inverse methods

postprocessor
slicing

time-series extractions
animations

VRML for geowall export
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