FEMs of dislocations within a subduction zone

Simulating complex structures with both forward and inverse models

GEODYNAMICS & ACTIVE DEFORMATION

THE UNIVERSITY OF ALABAMA GEOLOGICAL SCIENCES

Virtual field trips via FEMs

Deformation of big subduction quakes

West-central Mexico

Study Site 1995 Jalisco earthquake

Deformation models

fault

observed deformation \leftrightarrow causes of deformation

[/]slip

displacement

what we see (InSAR,GPS)

forward models inverse models

slip along a fault

Forward Model

Predict deformation caused by dislocation

unit impulse response function \rightarrow *geometry*

 $\boldsymbol{G}=f\left(\,\boldsymbol{D},\,\boldsymbol{W},\,\boldsymbol{L},\,\boldsymbol{\theta},\,\boldsymbol{x},\,\boldsymbol{y},\,\boldsymbol{z}\,\right)$

e.g., Okada [1992]

Inverse Model

Estimate dislocation to account for observed deformation

Complicated Deformation Pattern

Array of dislocation patches

Matrix Assembly

Array of dislocation patches

matrix expression

$$\begin{pmatrix} G_{11} & G_{21} & G_{31} & \dots & G_{n1} \\ G_{12} & G_{22} & G_{32} & \dots & G_{n2} \\ G_{13} & G_{23} & G_{33} & \dots & G_{n3} \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & &$$

$$\mathbf{G} \mathbf{S} = \mathbf{d}$$

unknown

 we can solve for s using linear matrix inverse methods

$G_{ij} s_i = \overline{d_j}$

system of linear equations

$$G_{11} s_1 + \dots G_{n1} s_n = d_1$$

$$G_{12} s_1 + \dots G_{n2} s_n = d_2$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$G_{1m}s_1 + \dots G_{nm}s_n = d_m$$

Solution Constraints

Laplacian operator \rightarrow smoothing

matrix expression: G s = d

additional constraints: avoid large variations between neighboring dislocations

Solution Constraints

Laplacian operator \rightarrow smoothing

matrix expression: G s = d

additional constraints: avoid large variations between neighboring dislocations

Solution Constraints

Laplacian operator \rightarrow smoothing

matrix expression: G s = d

additional constraints: avoid large variations between neighboring dislocations

Solution Constraints Laplacian operator \rightarrow smoothing ∇^2 $n \times n$ $\overline{\mathbf{L}} \mathbf{s} = \mathbf{0}$ matrix expression: G(s) = dunknowń

additional constraints: avoid large variations between neighboring sources

> β scalar, controls amount of smoothing

S

matrix expression: forward solution

(S) =

d

G

 $1 \times n$

d 0

Geodynamics

1995 M8 Jalisco quake

Damped least-squares

recall...

trade-off: misfit vs roughness

matrix expression – forward solution

 $\hat{\mathbf{G}}$ \mathbf{S} = $\hat{\mathbf{d}}$

unknowń

 $\frac{\text{matrix expression}}{-\text{inverse solution}}$ $\mathbf{s}^{\text{est.}} = \left[\begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{T} & \mathbf{G} \end{pmatrix}^{-$

Over-smoothing

recall...

trade-off: misfit vs roughness

matrix expression – forward solution

 $\hat{\mathbf{G}}$ \mathbf{S} = $\hat{\mathbf{d}}$

unknowń

 $\frac{\text{matrix expression}}{-\text{inverse solution}}$ $\mathbf{s}^{\text{est.}} = \left[\begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \wedge & \wedge \\ \mathbf{G}^{\text{T}} & \mathbf{$

Under-smoothing

recall...

trade-off: misfit vs roughness

matrix expression – forward solution

 $\hat{\mathbf{G}} = \hat{\mathbf{d}}$

unknowń

matrix expression – inverse solution

sest. = $\begin{pmatrix} \land & \land \\ \mathbf{G}^T & \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \land & \land \\ \mathbf{G}^T & \mathbf{G} \end{pmatrix}^{-1} \mathbf{G}^T \mathbf{d}$

Balance of fit and smoothing

recall...

trade-off: misfit vs roughness

matrix expression – forward solution

 $\hat{\mathbf{G}} = \hat{\mathbf{d}}$

unknowń

matrix expression – inverse solution

sest. = $\begin{pmatrix} \land & \land \\ \mathbf{G}^{\mathrm{T}} \mathbf{G} \end{pmatrix}^{-1} \begin{pmatrix} \land & \land \\ \mathbf{G}^{\mathrm{T}} \mathbf{G} \end{pmatrix}$

"Fit" Complicated Deformation Patterns

Geometric distribution of dislocation patches

deformation surface

How well does the model represent the natural system?

How well does the model represent the natural system?

How well does the model represent the natural system?

analytical solution

How well does the model represent the natural system?

analytical solution

How well does the model represent the natural system?

analytical solution

- Poisson-solid
- half-space

Test sensitivity to HIPSHS assumptions

Systematically relax and isolate each assumption

\vartriangle - GPS station

Finite Element Model (FEM):

numerical model; predicts deformation, stress, and pore pressure

$$\mu \nabla^2 u_i + \frac{\mu}{(1-2\upsilon)} \left[\frac{\partial^2 u_k}{\partial x_i \partial x_k} \right] = \alpha \frac{\partial P}{\partial x_k} - F_i$$
$$\alpha \frac{\partial \varepsilon_{kk}}{\partial t} + S_{\varepsilon} \frac{\partial P}{\partial t} = \frac{k}{\mu} \nabla^2 P + Q$$

Dislocation distribution for non-HIPSHS

FEM-generated unit impulse response functions

 \vartriangle - GPS station

Dislocation distributions

Non-HIPSHS configurations

non-HIPSHS deviations

kilometers

Why worry about the dislocation distribution?

Dislocation drives postseismic processes

viscoelastic deformation

Coulomb Stress

Geodynamics

ve Defo

Rupture & Deformation

2004 M9 Sumatra-Andaman earthquake & tsunami

Predicting seafloor deformation

Changes overlying water column

Predicting seafloor deformation

Changes overlying water column

Predicting seafloor deformation

Drives tsunami propagation models

cross-section

Predicting Seafloor Deformation

The source of the tsunami

typical deformation model

Predicting Seafloor Deformation

Preliminary model: 2D FEM

2004 M9 Sumatra-Andaman quake

gravity anomalies, mGal GPS site GPS displacement remote sensing targets 💸

Predicting Seafloor Deformation

Heterogeneity & displacement

Geodynamics

e Defor

²⁰⁰⁴ M9 Sumatra-Andaman quake

Coming soon:

3D virtual Sumatra-Andaman subduction zone

ABAQUS: Comprehensive FEM environment

Capabilities

preprocessor complex geometry axisym., 2D, 3D

mechanics simulated (partial list)

elastic poroelastic viscoelastic (linear & nonlinear) thermoelastic plastic

scripts \rightarrow inverse models

linear GF's automated geometric perturbations & remeshing non-linear inverse methods

postprocessor

slicing time-series extractions animations VRML for geowall export

Acknowledgements

Thanks to numerous colleagues and organizations for generous financial and professional support.

