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Why is margin-
parallel stress large?

Secular motion of
Cascadia forearc
(Modified from
Wells & Simpson,
2001).

Assumed to be
steady state.

To be subtracted
from interseismic
observations and
model.
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Why Is margin-
normal stress

~small?
Margin-normal stress

controlled by two
competing factors:

e Gravity induces
horizontal tension In
forearc

 Plate coupling causes
compression



Two converging elastic plates in frictional contact T = u'c

Non-lithostatic
stress symbols:

Thin — compression
Thick — tension

Method:

Finite element with
Lagrange-multiplier
domain
decomposition

Distance (km



Thermal model for
Cascadia
(Finite element)

Very little fictional
heating is required
to fit surface heat
flow observations,
Indicating very low
shear stress.
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Static friction:

Loading followed
by stress drop on
locked zone

Method:

Finite element
with Lagrange-
multiplier domain
decomposition
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Time dependent deformation



Inter-seismic
deformation rate

Post-seismic
deformation rate

Co-seismic
displacement




Fault slip vs. stress relaxation



After-sli




Stress
relaxation

Stress relaxation

Afterslip: ~ 1 — 10 years?
Relaxation: ~ decades? Hopefully effects of transient
and/or nonlinear rheology also become less pronounced



Backslip model for fault locking
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Viscoelastic model:
earthquake (foreslip)
followed by fault locking
(backslip)

Red: Locked (rupture)

Orange: transition

Viscoelastic
oceanic mantle

This accounts for
some afterslip in

a crude way




Finite element model;
27-node elements;
Maxwell viscoelastic




years after earthquake
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years after earthquake (today)
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Prolonged post-seismic
deformation and stress relaxation



Alaska
1964, Mw 9.2 ><

&—— Chile
— 1960, Mw 9.




North America

Plate
Alaska GPS campaigns

(1993-1997)

Freymueller et al. (2000, JGR)
Savage et al. (1999, GRL)

Pacific Plate




GPS data at Chile margin
~ 35 years after the 1960 great
earthquake (Mw 9.5)
(Klotz et al., EPSL, 2001)

3D finite element model of
mantle stress relaxation;
an earthquake (foreslip) followed
by fault locking (backslip)
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GPS =—3¢)
20 +2 mm/yr

EPSL, 2001)

earthquake (Mw 9.5)
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8-node finite elements:
Maxwell viscoelastic




3D Viscoelastic model of GPS data at Chile margin
post-seismic deformation ~ 35 years after the 1960 great
(mantle viscosity 2.5 x 101° Pa s) earthquake (Mw 9.5)
(Hu et al., JGR, 2004) (Klotz et al., EPSL, 2001)
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3D Viscoelastic model of crustal deformation following
1960 (M 9.5) Chile earthquake (Hu et al., JGR, 2004)
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Importance of along-strike rupture length and slip magnitude
(35 years after earthquake; mantle viscosity 2.5 x 101° Pa s)
(Hu et al., 2004)
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Summary

* A great subduction earthguake is the rupture of a weak
plate boundary fault; earthquake cycles cause small stress
changes but large strain rates

o Afterslip (or interseismic slip) and stress relaxation cannot
always be distinguished (model-dependent)

 Mantle wedge viscosity required in stress relaxation models
s~ 10 Pas

* Prolonged seaward motion of inland GPS sites can be
explained as post-seismic deformation following long-rupture
great earthquakes
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Effect of oceanic mantle viscosity (Pa s)
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Earthquake & backslip




Backslip Real slip
(Steady (Steady
subduction subduction
removed included)
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asperity for
large earthquake
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~ asperities for
B small earthquakes

~ aseismic slip




Developer: Jiangheng He

Preprocessing:
Software: academic version of VisualFEA (S. Korea) or GID (Spain)
2D: Direct use of above software

3D: Use above software to create 2D meshes on plate interface and
other important surfaces, then extrapolate into 3D

Visualization:
ParaView

Parallelization:

Elemental computing: Metis (Parmetis ready) (graphic partition)
Iterative solver: Aztec, Petsc

Direct solver: SuperLU
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