Viscoelastic Deformation Models for Subduction Earthquake Cycles

Kelin Wang^{1,2}, Jiangheng He¹, Yan Hu² ¹ Pacific Geoscience Centre, Geol Surv of Canada ² School of Earth & Ocean Sciences, Univ of Victoria

Stress and Strain

The Cascadia Subduction Zone

Summary of Stresses

Why is marginparallel stress large?

Secular motion of Cascadia forearc (*Modified from Wells & Simpson,* 2001).

Assumed to be steady state.

To be subtracted from interseismic observations and model.

The Cascadia Subduction Zone

Why is marginnormal stress small? Margin-normal stress controlled by two competing factors:

 Gravity induces horizontal tension in forearc

• Plate coupling causes compression

Two converging elastic plates in frictional contact $\tau = \mu' \sigma$

Non-lithostatic stress symbols:

Thin – compression Thick – tension

Method: Finite element with Lagrange-multiplier domain decomposition

Thermal model for Cascadia (Finite element)

Very little fictional heating is required to fit surface heat flow observations, indicating very low shear stress.

Static friction: Loading followed by stress drop on locked zone

Method: Finite element with Lagrangemultiplier domain decomposition

The Cascadia Subduction Zone

Time dependent deformation

Inter-seismic deformation rate

Post-seismic deformation rate

Co-seismic displacement

Fault slip vs. stress relaxation

Afterslip: ~ 1 – 10 years? Relaxation: ~ decades? Hopefully effects of transient and/or nonlinear rheology also become less pronounced

Backslip model for fault locking

Steady Subduction

50 years after earthquake

years after earthquake (today)

Prolonged post-seismic deformation and stress relaxation

Alaska GPS campaigns (1993-1997)

Freymueller et al. (2000, JGR) Savage et al. (1999, GRL) 3D finite element model of mantle stress relaxation; an earthquake (foreslip) followed by fault locking (backslip)

GPS data at Chile margin ~ 35 years after the 1960 great earthquake (Mw 9.5) (Klotz et al., EPSL, 2001)

8-node finite elements; Maxwell viscoelastic

GPS data at Chile margin ~ 35 years after the 1960 great earthquake (Mw 9.5) (Klotz et al., EPSL, 2001)

3D Viscoelastic model of post-seismic deformation (mantle viscosity 2.5 x 10¹⁹ Pa s) (Hu et al., JGR, 2004) GPS data at Chile margin ~ 35 years after the 1960 great earthquake (Mw 9.5) (Klotz et al., EPSL, 2001)

3D Viscoelastic model of crustal deformation following 1960 (M 9.5) Chile earthquake (Hu et al., JGR, 2004)

Importance of along-strike rupture length and slip magnitude (35 years after earthquake; mantle viscosity 2.5 x 10¹⁹ Pa s) (Hu et al., 2004)

Summary

• A great subduction earthquake is the rupture of a weak plate boundary fault; earthquake cycles cause small stress changes but large strain rates

• Afterslip (or interseismic slip) and stress relaxation cannot always be distinguished (model-dependent)

• Mantle wedge viscosity required in stress relaxation models is ~ 10^{19} Pa s

 Prolonged seaward motion of inland GPS sites can be explained as post-seismic deformation following long-rupture great earthquakes

8-node elements

27-node elements

Developer: Jiangheng He

Preprocessing:

Locked

Software: academic version of VisualFEA (S. Korea) or GID (Spain)

2D: Direct use of above software

3D: Use above software to create 2D meshes on plate interface and other important surfaces, then extrapolate into 3D

Visualization:

ParaViewckslip

Steady Subduction

Parallelization:

Elemental computing: Metis (Parmetis ready) (graphic partition) Iterative solver: Aztec, Petsc

Direct solver: SuperLU