Fault strength evolution during the seismic cycle: Insights from the laboratory

Dr. John Bedford University of Liverpool

Daniel Faulkner (Univ. of Liverpool) Takehiro Hirose (JAMSTEC) Yohei Hamada (JAMSTEC) Nadia Lapusta (Caltech) Michael Allen (Univ. of Liverpool)

Byerlee's rule

Pure and Applied Geophysics.

Lithospheric strength profiles

Kohlstedt et al., (1995), Journal of Geophysical Research

How strong are faults in nature?

Strong faults

Differential stress, ΔS (MPa)

Weak faults

Lamb (2006), Journal of Geophysical Research

For review of strong and weak faults see: Collettini et al., (2019), EPSL

Coseismic fault strength

Slip rate (m s⁻¹)

Di Toro et al., (2011), Nature

Part I: How does fault rock heterogeneity control fault strength and stability

Fault zone heterogeneity

How does heterogeneity influence fault strength and stability?

Methods: How does heterogeneity affect fault strength?

Experimental conditions:

Confining pressure = 60 MPa Pore-fluid pressure = 20 MPa

Effective normal stress = 40 MPa

Velocity steps of 0.3 to 3 μ m·s⁻¹ and back are applied throughout the experiment so that the rate-and state friction parameters can be analysed.

2 types of fault gouge used: Quartz (rate-weakening) Kaolinite clay (rate-strengthening)

Both gouges are $<5 \mu m$ grain size

Sliding area: 50 mm long, 20 mm wide, 1 mm thick

Results: Frictional strength evolution

Bedford et al., (2022), Nat. Comms.

Results: Frictional strength evolution

Bedford et al., (2022), Nat. Comms.

Causes of the observed weakening:

Clay-smearing

• Leads to a growing fraction of the shearing surface being hosted in the weaker clay gouge?

Stress concentrations

• Produced by the propagating localized Yshear bands allowing the strong quartz patch to slip at a lower shear stress?

Bedford et al., (2022), Nat. Comms.

Causes of the observed weakening:

Clay-smearing

 leads to a growing fraction of the shearing surface being hosted in the weaker clay gouge?

Stress concentrations

• Produced by the propagating localized Yshear bands allowing the strong quartz patch to slip at a lower shear stress?

Differential compaction

• Redistributing the normal stress leading to a weakening effect?

Results: Frictional stability

Bedford et al., (2022), Nat. Comms.

Other controls on frictional stability

0.008

-0.003

-0.004

0

10

20

30

40 Pore-fluid pressure (MPa)

50

60

70

80

σ'n (MPa)

25

• 50

A 75

Bedford et al., (2021), EPSL.

Summary (Part I)

Bedford et al., (2022), Nat. Comms.

Heterogeneous faults are weaker and more unstable than equivalent homogeneous faults.

• Could explain weak faults in nature?

The weakening effect is linked caused by a combination of processes:

- Clay smearing
- Stress concentrations
- Differential compaction

The interplay between the scale of heterogeneity and fault structure will likely control the seismogenic potential of the fault.

Part II: Fault strength recovery after an earthquake

Fault weakening and restrengthening

Dynamic fault weakening

Fault restrengthening (healing)

Seyler et al., (2020), EPSL.

Marone and Saffer (2015), Treatise on Geophys.

Fault healing in nature

Tadokoro and Ando (2002), GRL

S-wave splitting measurements after the 1995 Kobe earthquake.

Fault healed after 33 months (recurrence interval \approx 2000 yr).

Borehole permeability measurements after 2008 Wenchuan earthquake (M_w 7.9). Fault healed within 0.6–2.5 years.

Fault weakening and restrengthening

Bedford et al., (preprint), EarthArXiv

Experimental setup

Gouge layer (1.5 mm initial thickness) placed between steel sample holders.

Tested 2 types of gouge: gabbro and granite (both 63-125 µm grain size).

No pore-fluid pressure (atmospheric humidity conditions).

Normal stress = 1.5 MPa

Equivalent slip velocity = 0.57 m/s (650 rpm)

Slide-hold-slide experiments:

- 15 m displacement during each slide.
- Hold time varied.

Friction data

Friction data

Rapid frictional restrengthening

Rapid frictional restrengthening

$$\Delta \mu = \mu_{p,2nd} - \mu_{f,1st}$$

<u>Healing rate (β):</u>

$$\beta = \frac{\Delta \mu}{\log(t_h)}$$

Rapid frictional restrengthening

Bedford et al., (preprint), EarthArXiv

We analysed the surface of the sheared gouges using **Raman spectroscopy**:

• Provides information on the chemical bonding.

We analysed the surface of the sheared gouges using **Raman spectroscopy**:

• Provides information on the chemical bonding.

We analysed the surface of the sheared gouges using **Raman spectroscopy**:

• Provides information on the chemical bonding.

Rapid restrengthening potentially caused by enhanced hydrogen bonding at asperity contacts in the gouge?

SHS experiments run at subseismic slip velocities (85 mm/s) on bare surfaces of gabbro. Mizoguchi et al., (2006), GRL.

Summary (Part II)

Granite and gabbro gouge faults regain their strength rapidly after seismic slip.

• Healing occurs at temperatures >250°C

The sheared gouges show a Raman peak associated with the H-O-H bending vibration mode.

• Potentially enhances chemical bonding at frictional contacts leading to rapid restrengthening.

Our results suggest faults can heal rapidly after an earthquake

• Fast-acting healing mechanisms may also be important for the generation of pulse-like ruptures

Summary

