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Chapter 1

Introduction

SW4 (Seismic Waves, 4th order) is a program for simulating seismic wave propagation on parallel
computers. It shares many features with our previous seismic wave propagation code WPP [15].
Both WPP and SW4 solve the seismic wave equations in displacement formulation using a node-
based finite difference approach. The numerical method satisfies the principle of summation by
parts, which guarantees energy stability of the numerical solution. The major difference between
WPP and SW4 lies in the accuracy of the underlying numerical method. SW4 is fourth order
accurate in space and time [20], but WPP is only second order accurate. SW4 is therefore sig-
nificantly more efficient than WPP, because a coarser grid can be used to capture waves with the
same frequency content. Compared to a second order accurate method, the advantages of a fourth
order method are more pronounced when the solution needs to be more accurate. This is because
the error diminishes at a faster rate as the grid size is reduced. A fourth order method is also
more efficient when the solution needs to remain accurate for longer times, because the phase error
grows at a slower rate in a higher order numerical method [8]. Keeping the phase error small is,
for example, important to accurately predict the arrival times of waves that have propagated over
many wave lengths. The fourth order method is also significantly more accurate for calculating
surface waves, in particular when the ratio between the compressional and shear wave speeds is
large, i.e. Cp/Cs ≫ 1, see [9].

SW4 implements substantial capabilities for 3-D seismic modeling, with a free surface condition
on the top boundary, absorbing super-grid conditions on the far-field boundaries [17], and an
arbitrary number of point force and/or point moment tensor source terms. Each source time
function can have one of many predefined analytical time dependencies, or interpolate a user defined
discrete time series. SW4 supports a fully 3-D heterogeneous material model that can be specified in
several formats. It uses a curvilinear mesh near the free surface to honor the free surface boundary
condition on a realistic topography. The curvilinear mesh is automatically generated from the
description of the topography. To make SW4 more computationally efficient, the seismic wave
equations are discretized on a Cartesian mesh below the curvilinear grid. The Cartesian mesh,
which extends to the bottom of the computational domain, is also generated automatically.

SW4 solves the seismic wave equations in Cartesian coordinates. It is therefore appropriate for
local and regional simulations, where the curvature of the earth can be neglected. Locations can be
specified directly in Cartesian coordinates, or through geographic (latitude, longitude) coordinates.
SW4 can be built to use the Proj.4 library [13] for calculating the mapping between geographic
and Cartesian coordinates, or use an approximate spheroidal mapping. SW4 can output synthetic
seismograms in an ASCII text format, or in the SAC format [7]. It can also present simulation
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information as GMT [21] scripts, which can be used to create annotated maps. SW4 can output
the solution, derived quantities of the solution, as well as the material model along 2-D grid planes.
Furthermore, SW4 can output the 3-D volumetric solution, or material model, in a binary file
format.

Cartesian local mesh refinement can be used to make the computational mesh finer near the
free surface, where more resolution often is needed to resolve short wave lenghts in the solution,
for example in sedimentary basins. The mesh refinement is performed in the vertical direction
and each Cartesian grid is constructed from user specified refinement levels. In this approach, the
grid size in all three spatial directions is doubled across each mesh refinement interface, leading to
substantial savings in memory and computational effort. The energy conserving mesh refinement
coupling method described in [14], but generalized to fourth order of accuracy, is used to handle
the hanging nodes along the refinement interface.

Visco-elastic behavior can be important when modeling the dissipative nature of realistic ma-
terials, especially for higher frequencies. SW4 uses the rheological model of standard linear solid
(SLS) elements, coupled in parallel. The coefficients in each SLS are determined such that the
resulting quality factors Qp and Qs, for the attenuation of P- and S-waves, become approximately
constant as function of frequency. These quality factors can vary from grid point to grid point over
the computational domain and are read in the same way as the elastic properties of the material
model. The numerical method for solving the visco-elastic wave equation is based on the technique
described in [16].

While most of the SW4 code is written in C++, almost all numerical computations are imple-
mented in Fortan-77. SW4 uses a distributed memory programming model, implemented with the
C-bindings of the MPI library. Compatible versions of the C++ and Fortran-77 compilers as well
as the MPI library must be available to build the code. We have built and tested SW4 on a variety
of machines, ranging from single processor laptops to large super-computers with O(100, 000) cores.

With the exception of some minor details, the syntax of the SW4 command file is the same
as in WPP. Most of the input and output files also use the same formats, but we have taken the
opportunity to improve the image file format, see Chapter 12. SW4 supports most of the func-
tionality of WPP, version 2.2. Compared to version 1.1 of SW4, the main improvement in version
2.0 is the refinement command for using mesh refinement with hanging nodes. A preliminary
implementation of mesh refinement was first introduced in version 1.18. It has now been further
improved and generalized to support anelastic materials.

The examples subdirectory of the SW4 source distribution contains several examples and vali-
dation tests that are used in this document. Many Matlab/octave scripts are provided in the tools
directory.

1.1 How to cite SW4

The Computational Infrastructure for Geodynamics (CIG) (geodynamics.org) makes the SW4
source code available to you at no cost in hope that the software will benefit your research in
geophysics. A number of individuals have contributed a significant portion of their careers toward
the development of this software. It is essential that you recognize these individuals in the normal
scientific practice by citing the appropriate peer-reviewed papers and making appropriate acknowl-
edgments in talks and publications. The following peer-reviewed papers discuss the numerical
methods that are implemented in SW4 :
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• Petersson, N.A. and B. Sjögreen (2015). Wave propagation in anisotropic elastic ma-
terials and curvilinear coordinates using a summation-by-parts finite difference method,
Journal of Computational Physics, 299, 820-841. DOI: 10.1016/j.jcp.2015.07.023, URL:
http://linkinghub.elsevier.com/retrieve/pii/S0021999115004684.

• Petersson, N.A. and B. Sjögreen (2012). Stable and efficient modeling of anelastic attenuation
in seismic wave propagation, Communications in Computational Physics, 12 (01), 193-225.

• Sjögreen, B. and N.A. Petersson (2012). A Fourth Order Accurate Finite Difference Scheme
for the Elastic Wave Equation in Second Order Formulation, Journal of Scientific Computing,
52 (1) , 17-48, doi: 10.1007/s10915-011-9531-1, url: http://link.springer.com/10.1007/s10915-
011-9531-1

To cite the SW4 software and manual, use:

• Petersson, N.A. and B. Sjögreen (2017). SW4 v2.0. Computational Infrastructure of Geody-
namics, Davis, CA. DOI: 10.5281/zenodo.1045297.

• Petersson, N.A. and B. Sjögreen (2017). User’s guide to SW4, version 2.0. Technical report
LLNL-SM-741439, Lawrence Livermore National Laboratory, Livermore, CA.

1.2 Acknowledgments

The SW4 code was developed under financial support from Lawrence Livermore National Labora-
tory. The underlying numerical method was developed under financial support from the Office of
Science at the U.S. Department of Energy.
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Chapter 2

Getting started

2.1 Running SW4

This section assumes that SW4 has already been installed on your computer system. We refer to
the report by Petersson and Sjogreen [19] for instructions on how to install SW4.

SW4 can be executed from the command line or from a script. The simulation is specified by
the input file, and the name of the input file is given on the command line. The input file is an
ASCII text file that contains a number of commands specifying the properties of the simulation,
such as the dimensions of the computational domain, grid spacing, the duration of the simulation,
the material properties, the source model, as well as the desired output. To improve readability
of this document we have used the continuation character “\” to extend long commands to the
subsequent line. There is however no support for continuation characters in SW4, so each command
must be given on one (sometimes long) line in the input file.

Since SW4 is a parallel code, it is required to be run under a parallel execution environment
such as mpiexec, mpirun, openmpirun, or srun. The srun command is currently always used on the
parallel machines at Livermore Computing. It is important to start SW4 with the correct parallel
execution tool. For example, if you build SW4 with the openmpi compilers, you should use the
openmpirun environment. Also note that some systems require you to start an mpd daemon before
running any parallel programs. Chances are high that somebody else has already figured out how
to run parallel programs on your system. If you have problems running SW4, ask your local system
administrator, or somebody else who has experience running MPI programs on your system.

Throughout this document we use the convention that input files have the file suffix .in.
However, SW4 will attempt to read any input file, regardless of its extension.

If your system is setup for using mpiexec, the command

shell> mpiexec -np 2 sw4 test.in

runs SW4 on 2 processes, and tells it to read the input from a file named test.in. If you are using
mpirun, you would instead use the command

shell> mpirun -np 2 sw4 test.in

Remark: If SW4 produces strange looking outputs, for example where the same text is repeated
several times (e.g. once per processor), you are probably running SW4 under the wrong parallel
execution environment. Make sure you are running SW4 under an environment that is compatible
with the compiler that was used to build SW4.
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2.1.1 Version information (-v)

Version information for the SW4 executable can be obtained through the -v flag:

shell> mpirun optimize/sw4 -v

----------------------------------------------------------------

sw4 version 2.0

This program comes with ABSOLUTELY NO WARRANTY; released under GPL.

This is free software, and you are welcome to redistribute

it under certain conditions, see LICENSE.txt for more details

----------------------------------------------------------------

Compiled on: Mon Nov 6 09:11:04 PST 2017

By user: petersson1

Machine: fourier.llnl.gov

Compiler: /opt/local/bin/mpicxx

3rd party include dir: /opt/local/lib/proj47/include, and library dir: /opt/local/lib/proj47/lib

----------------------------------------------------------------

Note that the same information is by default printed to standard out (your screen, or log file when
running in batch mode) at the beginning of every run.

2.1.2 Running on the parallel machines at Livermore Computing

The srun command is currently used to run parallel jobs on LC machines. For example, the
command

shell> srun -ppdebug -n 32 sw4 xxx.in

runs SW4 on 32 processors on the debug partion using xxx.in as the input file. Note that the
pdebug partition is intended for shorter jobs. It is subject to both a CPU time limit and a limit
on the number of processors per job. Jobs requiring more computer resources must be submitted
through the batch system, currently using the msub command. Refer to the Livermore Computing
web pages for detailed information (https://computing.llnl.gov).
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Chapter 3

Governing equations, coordinate
system, and units

SW4 simulates the motion due to a seismic event by solving the elastic or visco-elastic wave
equations in displacement formulation. This is a system of linear hyperbolic partial differential
equations in second order formulation. By second order formulation, we mean that the partial
differential equation contains second derivatives with respect to space and time. The equations
are solved in the three-dimensional spatial domain x ∈ Ω during the time interval 0 ≤ t ≤ T . By
default, the motion starts from rest and is driven by a forcing function F(x, t). In the elastic case,
the motion is governed by

ρutt = ∇ · T + F(x, t), x in Ω, 0 ≤ t ≤ T, (3.1)

u(x, 0) = 0, ut(x, 0) = 0, x in Ω. (3.2)

Here, ρ is the density, u(x, t) is the displacement vector, and T = T (u) is the stress tensor. The
computational domain Ω is a box shaped region where one side optionally follows the shape of the
topography. By default, a free surface (also called traction-free, or zero normal stress) boundary
condition is enforced along the top boundary,

T · n = 0, z = τ(x, y), t ≥ 0.

Here n is the unit normal of the z = τ(x, y) surface. By default, a super-grid damping layer is used
on all other sides of the computational domain.

SW4 uses a right-handed Cartesian coordinate system with the z-direction pointing downwards
into the medium, see figure 3.1. SW4 employs MKS (meters-kilograms-seconds) units. All distances
(e.g., grid dimensions, spacing, and displacements) are in meters (m), time is in seconds (s), seismic
P- and S-wave velocities are in meters per second (m/s), densities are in kilogram per cubic meter
(kg/m3), forces are in Newton (N), and seismic moment (torque) is in Newton-meters (Nm). All
angles (e.g. latitude, longitude, azimuth, strike, dip and rake) are in degrees.

In SW4 the computational domain is rectangular in the horizontal plane and the vertical extent
is defined by the topographic surface

z = τ(x, y),

which defines the shape of the free surface. SW4 can also be run with flat topography, in which
case τ(x, y) = 0 and the z-coordinate equals the depth below the free surface. In the general case,
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Figure 3.1: SW4 uses a right handed coordinate system with the z-axis pointing downwards.

the computational domain is given by

0 ≤ x ≤ xmax, 0 ≤ y ≤ ymax, τ(x, y) ≤ z ≤ zmax. (3.3)

The grid command in the input file specifies the extent of the computational domain and the
grid size h. When topography is enabled, the grid size in the curvilinear grid equals h in the
horizontal directions, but varies in the vertical direction to allow the curvilinear grid to follow the
shape of the free surface. In this case, the number of grid points in the vertical direction is chosen
such that the average of the vertical grid size approximately equals h. When mesh refinement is
enabled, this is the grid size in the coarsest grid.

The most precise way of specifying the grid is by providing the number of grid points in each
direction as well as the grid size,

grid nx=301 ny=201 nz=101 h=500.0

This command gives a grid with grid size 500 meters, which extends 150 km in x, 100 km in y and
50 km in the z-direction. Alternatively, the grid can be specified by giving the spatial range in each
of the three dimensions and explicitly specifying the grid spacing. For example, the command

grid x=30e3 y=20e3 z=10e3 h=500.0

results in a grid which spans 30,000 meters in x, 20,000 meters in y, and 10,000 meters in the
z-direction. The grid spacing is 500 meters, which is used to compute the number of grid points in
each direction: nx=61, ny=41, and nz=21, for a total of 52,521 grid points. Note that the number
of grid points in the different directions will be rounded to the nearest integer value according to
the pseudo C-code

nx = (int)(1.5 + x/h). (3.4)

The extent in the x-direction is thereafter adjusted to

x = (nx− 1)h. (3.5)

A corresponding procedure is performed in the other coordinate directions.
The third option is to give the spatial range in each of the three dimensions and specify the

number of grid points in one direction:
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grid x=30000 y=20000 z=10000 nx=100

In this case, the grid spacing is computed as

h = x/(nx− 1) = 303.03.

Note that no rounding needs to take place in this case, since h is a floating point number. Given
this value of h, ny and nz are computed using formulas corresponding to (3.4) giving ny=34 and
nz=67, for a total of 227,800 grid points. Again, the extents in the y and z-directions are adjusted
corresponding to (3.5). The syntax for the grid command is given in Section 11.1.2.

The simulation always starts at t = 0 and runs until t = T , where the user must specify T with
the time command. For example,

time t=1.6

sets T = 1.6 seconds. Alternatively, the simulation time interval can be specified as a number of
time steps,

time steps=1200

The end time will in this case be T = 1200∆t, where the time step ∆t is determined automatically
by SW4 to satisfy the CFL time step restriction. This calculation is based on the ratio between
the grid size and the largest characteristic wave speed, which depends on both the compressional
and shear wave speeds.

The simulation start time can be related to a universal time coordinate (UTC). The option
utcstart sets the UTC that corresponds to simulation time t = 0, for example,

time t=1.6 utcstart=01/31/2012:17:34:12.233

The format of the UTC is “month/day/year:hour:minute:second.millisecond”. When the UTC time
is set, it is saved in the header of all time series files (see the rec command). Note that the UTC
can be very useful for aligning simulated and observed time series.

3.1 Geographical coordinates and projections

SW4 supports geographical coordinates as an alternative way of specifying spatial locations. The
geographic location of the origin of the Cartesian coordinte system (lat0, lon0), see Figure 3.2, is
specified in the grid command. If no location is given, the default location is lat0 = 37 degrees,
lon0 = -118 degrees, and the azimuthal angle of the x-axis is 135 degrees from North. We remark
that latitudes are positive North of the equator and longitude are positive East of the Greenwich
prime meridian. The vertical coordinate increases downwards. For the case of general topography,
z = 0 corresponds to mean sea level. When the topography is flat (no topography command in
the input file), z = 0 corresponds to the free surface.

3.1.1 Spheroidal mapping

By default, the latitude (lat) and longitude (lon) are calculated using a spheroidal mapping,

lat = lat0 +
x cos(α)− y sin(α)

M
, α = az

π

180
, (3.6)

lon = lon0 +
x sin(α) + y cos(α)

M cos(ϕπ/180)
. (3.7)
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Figure 3.2: Geographical coordinates in SW4.

In this formula, lat, lon, az, lat0, and lon0 are all in degrees, and M = 111, 319.5 meters1. You can
change the location and orientation of the grid by specifying the latitude and longitude of the grid
origin, as well as the azimuthal angle between North and the x-axis. For example:

grid h=500 x=30000 y=20000 z=10000 lat=39 lon=-117 az=150

sets the origin of the grid to latitude 39 degrees (North), longitude -117 degrees (West), and
azimuthal angle 150 degrees.

The default projection is spheriodal as described by equations (3.6)-(3.7). You can change the
parameter M with the mlat keyword in the grid command. By using the mlon keyword, you can
also modify the projection by replacing M cos(ϕπ/180) in (3.7) by the constant value Mlon. Using
the mlon keyword is only recommended if the computational domain is small and accurate values
of both mlon and mlat are available.

3.1.2 The Proj.4 library

More accurate projections are available through the Proj4 library (if SW4 was built with Proj4
support). These projections are enabled by using the proj, or any of the related, keywords in the
grid command. For example,

grid h=300 x=40e3 y=43e3 z=40e3 lat=45.01 lon=5.52 az=0 proj=utm ellps=WGS84

1Note that M/60 = 1, 855.325 meters corresponds to one minute of arc of longitude along the Equator on the
WGS84 ellipsoid. This distance is also known as a geographical mile and is approximately equal to a Nautical mile
(1,852 meters).
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sets the origin of the grid to latitude 45.01 degrees (North), longitude 5.52 degrees (East), and
azimuthal angle 0. Here we use the UTM projection based on the WGS84 ellipse. Note that the
strings “proj=utm” and “ellps=WGS84” are passed directly to the Proj4 library to initialize the
projection. Several other options are available, see Section 11.1.2 and the Proj4 documentation [13]
for further details.

3.2 Super-grid damping layers

SW4 implements a super-grid modeling technique to reduce artificial reflections from the far-field
boundaries [2, 17]. In this method, layers are added around the domain of interest, i.e., the domain
in which we want to solve the seismic wave equation. In each layer, a stretching function is used
to transform the seismic wave equation to mimic a much larger physical domain. The basic idea
is to delay artificial reflections from the far-field boundary, because making the physical domain
larger means that it will take longer for waves to arrive at the boundary, and then return back
into the domain of interest. Inside the layers, the streching function is combined with a high order
artificial dissipation. It damps out waves that have become poorly resolved on the grid because of
the stretching function. Note that the artificial dissipation is only added in the layers, and should
not affect the accuracy of the solution in the interior of the domain.

The coordinate stretching compresses the solution inside the layers. This corresponds to a
slowing down of all traveling waves in the direction normal to each far-field boundary. As a result,
the isotropic elastic wave equation becomes anisotropic in the super-grid layers. By using energy
estimates, it is possible to prove that the super-grid technique leads to a stable numerical method
where the total energy of the solution decreases with time. This estimate is valid for heterogeneous
material properties and free surface boundary conditions on one or more sides of the domain, and
also extends to anisotropic elastic materials and curvilinear grids. See the papers by Petersson and
Sjogreen [17, 18] for details.

Super-grid layers are by default added to all sides of the computational domain, except along
the free surface, see Figure 3.3. The default thickness of the layers is 30 grid sizes, but the thickness
of the super-grid layers can be changed with the supergrid command, see Section 11.1.4. Note
that long waves are harder to suppress than short waves, because the artificial damping is less
efficient for waves that are well resolved on the grid. The best way of reducing artificial reflections
is to make the super-grid layers thicker. Increasing the dissipation coefficient is not recommended
as it can make the explicit time stepping unstable. Reducing the thickness of the super-grid layers
to below 20 grid sizes can also lead to instabilities, unless the artificial dissipation coefficient is also
reduced. The syntax of the supergrid command is described in Section 11.1.4.

For reasons, the super-grid layers are part of the computational domain as specified by the
grid command. If, for example, each super-grid layer is 30 grid points wide, the solution should
be considered artificial in the first and last 30 points in each horizontal direction, and the bottom
30 points in the vertical direction. Note that the numerical solution within the layers do not
approximate the solution of the seismic wave equations. For this reason, it is important to make
the computational domain sufficiently large. If the super grid layers are 30 grid points wide, the
computational grid must be at least 60 grid points wide in the x and y-directions, and 30 points
wide in the Cartesian part of the z-direction. Additional grid points must be added in the interior of
the computational domain for the actual seismic modeling. Note that sources and receivers should
only be placed in the interior of the computational domain, i.e., the white region of Figure 3.3.

15



Figure 3.3: A vertical cross-section through the computational domain with a free surface boundary
along the top edge. The original seismic wave equation is solved the white region. The wave speed
is reduced in the normal direction of the surrounding super-grid layers, where also a high order
damping term is added.

Remark: As a user of SW4, you do not have to worry about the stretching functions or the
artificial dissipation in the super-grid layers, because they are set up automatically. Just make
sure the computational grid has a sufficient number of grid points to accomodate the layers, and
be aware that the seismic wave equation is modified in the layers, which makes that part of the
solution artificial.
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Chapter 4

Sources, time-functions, and grid size

4.1 Point force and moment tensor sources in SW4

The forcing term F in equation (3.1) consists of a sum of point forces and point moment tensor
source terms. For a point forcing we have

F(x, t) = g(t, t0, ω)F0


Fx

Fy

Fz

 δ(x− x0),

where x0 = (x0, y0, z0) is the location of the point force in space, and g(t, t0, ω) is the time function,
with offset time t0 and frequency parameter ω. The source time function can be selected from a
set of predefined functions, or by spline interpolation of a user defined discrete time-series. The
(Fx, Fy, Fz)

T vector holds the Cartesian components of the force vector, which is scaled by the force
amplitude F0.

For a moment tensor source we have

F(x, t) = g(t, t0, ω)M ·∇δ(x− x0), M =


Mxx Mxy Mxz

Mxy Myy Myz

Mxz Myz Mzz

 .

The seismic moment of a moment tensor source is defined by

M0 =
1√
2

√
M : M =

1√
2

[
(M2

xx +M2
yy +M2

zz) + 2(M2
xy +M2

xz +M2
yz)

]1/2
.

Note that the moment tensor is always symmetric. A moment source term can alternatively be
specified by using M0 and the dip, strike, and rake angles, as defined by Aki and Richards [1]. The
syntax is described in Section 11.2.1.

The total seismic moment
∑

M0 [Nm] is related to the moment magnitude by the formula

MW =
2

3

[
log10

(∑
M0

)
− 9.1

]
,

where the summation
∑

M0 is done over all moment sources. After parsing all source commands
in an input file, SW4 outputs the moment magnitude using this formula. This information is given
right before the time-stepping is started and looks like this:
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-----------------------------------------------------------------------

Total seismic moment (M0): 1.7162e+17 Nm

Moment magnitude (Mw): 5.42305

Number of sources 542

-----------------------------------------------------------------------

Note that the calculation of the total seismic moment and magnitude only take the moment tensor
sources into account, i.e., ignores all point forces.

For moment tensor sources, the function g(t) is called the moment history time function, while its
time derivative g′(t) is known as the moment rate time function. SW4 calculates the displacements
of the motion corresponding to the moment history time function g(t). Because the material
properties are independent of time, the equations solved by SW4 also govern the velocities when the
time function is replaced by g′(t), i.e., the corresponding moment rate time function. For example,
if the solution calculated with the GaussianInt time function represents the displacements of the
motion, the solution calculated with the Gaussian time function corresponds to the velocities of
the same motion. Hence, if you are primarily interested in calculating velocities, you can reduce
the amount of post processing by using the corresponding moment rate time function in the source
term(s).

If you are interested in comparing results from SW4 with some other code, keep in mind that
many other seismic wave propagation codes are based on the first order velocity-stress formulation
of the elastic wave equation. Such codes solve for the velocities of the motion. They use the moment
rate time function (g′(t)) for moment tensor sources, but the regular time function (g(t)) for point
forces.

The forcing function in SW4 is specified in the input file using at least one source or rupture
command. These options can be combined. The rupture command allows complicated source
mechanisms to be described in a separate SRF (Standard Rupture Format) file. It is equivalent
to at least one (but often many) source command(s). There needs to be at least one source
command in the input file in order for anything to happen during the simulation. Complicated
source mechanisms can be described by having many source commands in the input file. An example
with one source command is:

source x=5000 y=4000 z=600 mxx=1e15 myy=1e15 mzz=1e15 \

type=RickerInt t0=1 freq=5

The above command specifies an isotropic source (explosion) at the location x0 = (5000, 4000, 600)
with amplitude 1015 Nm, using the RickerInt time function with offset time t0 = 1 s and frequency
parameter ω = 5 Hz. The off-diagonal moment tensor elements (Mxy, Mxz and Myz) are implicitly
set to zero (which is the default value).

Note that it is not necessary to place the sources exactly on grid points. The discretization
of the source terms is fourth order accurate for any location within the computational domain,
including the free surface. However, unexpected results may be obtained if the sources are located
in the super-grid far-field layers.

4.2 Predefined time functions

All pre-defined source time functions start from zero (limt→−∞ g(t, t0, ω) = 0) and tend to a constant
terminal value, limt→∞ g(t, t0, ω) = g∞. In seismic applications, time function that have a non-
zero terminal value (g∞ ̸= 0) lead to a non-zero steady-state solution after long times. Such time
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functions are used to solve for the displacement of the motion. When g∞ = 0, the solution tends
to zero for large times. This is expected from the velocities or accelerations of the motion due to a
seismic event.

The Gaussian, Dirac, and Triangle functions integrate to one (
∫∞
−∞ g(t, t0, ω) dt = 1), while

the Sawtooth, Smoothwave, and Ricker functions integrate to zero and have maximum amplitude
one. The RickerInt function is the time-integral of the Ricker function and integrates to zero. The
GaussianInt, Brune, BruneSmoothed, and Liu functions tend to one (limt→∞ g(t, t0, ω) = 1).

The initial conditions are homogeneous when SW4 is used to calculate the motion due to point
force and moment tensor sources. In other words, the initial displacement and velocity are zero.
To avoid incompatibilities, the source time functions must also start smoothly. Since the Triangle,
Sawtooth, Ramp, Smoothwave, Brune, BruneSmoothed, Liu and VerySmoothBump functions are
identically zero for t < t0, these time functions must have t0 ≥ 0. More care is required for the
Gaussian, GaussianInt, Ricker, and RickerInt functions, because they are centered around t = t0,
with exponentially decaying tails for t < t0. For these functions, incompatibilty problems can only
be avoided if t0 is positive and of the order O(1/ω), where ω equals the freq parameter. We
recommend choosing t0 such that g(0, t0, ω) ≤ 10−8 for these functions.

4.2.1 Gaussian

g(t, t0, ω) =
ω√
2π

e−ω2(t−t0)2/2.

Note that the spread of the Gaussian function (often denoted σ) is related to ω by σ = 1/ω. A
plot of the Gaussian time-function is shown in Figure 4.1.

Important: To avoid artifacts from a sudden startup, use t0 ≥ 6/ω.

4.2.2 GaussianInt (or Erf)

g(t, t0, ω) =
ω√
2π

∫ t

−∞
e−ω2(τ−t0)2/2 dτ.

GaussianInt is the time-integral of the Gaussian. A plot of the GaussianInt time-function is shown
in Figure 4.1.

Important: To avoid artifacts from a sudden startup, use t0 ≥ 6/ω.

4.2.3 Ricker

g(t, t0, ω) =
(
2π2ω2(t− t0)

2 − 1
)
e−π2ω2(t−t0)2 .

A plot of the Ricker time-function is shown in Figure 4.2.

Important: To avoid artifacts from a sudden startup, use t0 ≥ 1.35/ω.
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Figure 4.1: Gaussian (left) and GaussianInt (right) with ω = π and t0 = 0.

4.2.4 RickerInt

g(t, t0, ω) = (t− t0)e
−π2ω2(t−t0)2 .

RickerInt is the time integral of the Ricker function, and is proportional to the time-derivative of
the Gaussian function. Since the RickerInt function tends to zero for large times, it does not lead
to any permanent displacements. A plot of the RickerInt time-function is shown in Figure 4.2.

Important: To avoid artifacts from a sudden startup, use t0 ≥ 1.35/ω.

4.2.5 Brune

g(t, t0, ω) =

{
0, t < t0,

1− e−ω(t−t0)(1 + ω(t− t0)), t ≥ t0.

Note that the Brune function only has one continuous derivative. Because its second derivative is
discontinuous at t = t0, this function can generate noisy numerical solutions. We recommend filter-
ing all computed time series, or using the prefilter command to remove any unresolved motions.

4.2.6 BruneSmoothed

The BruneSmoothed function has three continuous derivatives at t = t0, but is otherwise similar
to the Brune function,

g(t, t0, ω) =



0, t < t0,

1− e−ω(t−t0)

[
1 + ω(t− t0) +

1

2
(ω(t− t0))

2

− 3

2τ0
(ω(t− t0))

3 +
3

2τ20
(ω(t− t0))

4 − 1

2τ30
(ω(t− t0))

5

]
, 0 < ω(t− t0) < τ0,

1− e−ω(t−t0)(1 + ω(t− t0)), ω(t− t0) > τ0.

The parameter τ0 in the above formula is fixed to the value 2.31. Plots of the Brune and BruneS-
moothed time-functions are shown in Figure 4.3. Since the BruneSmoothed function has three
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Figure 4.2: Ricker (left) and RickerInt (right) with ω = 1 and t0 = 0.

continuous derivatives, it generates less high frequency noise than the Brune function and gives
better accuracy for a given grid resolution.

4.2.7 Liu

This function was given in the paper by Liu et al., [11]. It is defined by

g(t, t0, ω) =



0, t ≤ t0,

C

[
0.7(t− t0) +

1.2

π
τ1 −

1.2

π
τ1 cos

(
π(t− t0)

2τ1

)
− 0.7

π
τ1 sin

(
π(t− t0)

τ1

)]
, t0 < t ≤ τ1 + t0,

C

[
t− t0 − 0.3τ1 +

1.2

π
τ1 −

0.7

π
τ1 sin

(
π(t− t0)

τ1

)
+

0.3

π
τ2 sin

(
π(t− t0 − τ1)

τ2

)]
, τ1 + t0 < t ≤ 2τ1 + t0,

C

[
0.3(t− t0) + 1.1τ1 +

1.2

π
τ1

+
0.3

π
τ2 sin

(
π(t− t0 − τ1)

τ2

)]
, 2τ1 + t0 < t ≤ τ + t0,

1, t > τ + t0.

The parameters are given by τ = 2π/ω, τ1 = 0.13τ , τ2 = τ−τ1, and C = π/(1.4τ1π+1.2τ1+0.3τ2π).
The Liu function resembles the Brune function, but the rise is somewhat steeper for small t − t0,
see Figure 4.4.
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Figure 4.3: Brune (left) and BruneSmoothed (right) with ω = 2 and t0 = −1.

Figure 4.4: Liu time function with ω = 2 and t0 = 0.
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Figure 4.5: Triangle (left) and Sawtooth (right) with ω = 1 and t0 = 0.

4.2.8 Triangle

For t0 < t < t0 + 1/ω,

g(t, t0, ω) =
16ω

π2

[
sin(πω(t− t0))−

sin(3πω(t− t0))

9
+

sin(5πω(t− t0)

25
− sin(7πω(t− t0))

49

]
,

with g(t, t0, ω) = 0 elsewhere. A plot of the Triangle time-function is shown in Figure 4.5.

4.2.9 Sawtooth

For t0 < t < t0 + 1/ω,

g(t, t0, ω) =
8

π2

[
sin(2πω(t− t0))−

sin(6πω(t− t0))

9
+

sin(10πω(t− t0))

25
− sin(14πω(t− t0))

49

]
,

with g(t, t0, ω) = 0 elsewhere. A plot of the Sawtooth time-function is shown in Figure 4.5.

4.2.10 Ramp

g(t, t0, ω) =


0, t < t0,

0.5(1− cos(π(t− t0)ω)), t0 ≤ t ≤ t0 + 1/ω,

1, t > t0 + 1/ω.

A plot of the Ramp time-function is shown in Figure 4.6.
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Figure 4.6: Ramp (left) and Smoothwave (right) with ω = 1 and t0 = 0.

4.2.11 Smoothwave

For t0 < t < t0 + 1/ω,

g(t, t0, ω) =
2187

8
(ω(t− t0))

3 − 10935

8
(ω(t− t0))

4 +
19683

8
(ω(t− t0))

5

− 15309

8
(ω(t− t0))

6 +
2187

4
(ω(t− t0))

7,

with g(t, t0, ω) = 0 elsewhere. A plot of the Smoothwave time-function is shown in Figure 4.6.

4.2.12 VerySmoothBump

g(t, t0, ω) =


0, t < t0,

1024ω5(t− t0)
5(1− ω(t− t0))

5, t0 ≤ t ≤ t0 + 1/ω,

0, t > t0 + 1/ω.

The VerySmoothBump function satisfies 0 ≤ g ≤ 1. It has four continuous derivatives. A plot of
the VerySmoothBump time-function is shown in Figure 4.7.

4.2.13 C6SmoothBump

g(t, t0, ω) =


0, t < t0,

51480ω7(t− t0)
7(1− ω(t− t0))

7, t0 ≤ t ≤ t0 + 1/ω,

0, t > t0 + 1/ω.
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Figure 4.7: VerySmoothBump (left) with ω = 0.5 and t0 = 0. C6SmoothBump (right) with ω = 2
and t0 = 0.

The C6SmoothBump function has six continuous derivatives and integrates to one. A plot of the
C6SmoothBump time-function is shown in Figure 4.7.

4.2.14 GaussianWindow

g(t, t0, ω) = sin(ωt)e−(ω(t−t0)/Nc)2/2

A plot of the GaussianWindow time-function with Nc = 5 is shown in Figure 4.8. Note that Nc

is specified with the ncyc keyword, which must be given when this time function is used in the
source command.

4.2.15 Dirac

The Dirac distribution δ(t− τ0) is not a regular time function because it is zero everywhere, except
at t = τ0, where it is unbounded. The integral of δ(t) is one, and if f(t) is a continuous function,∫

f(t)δ(t− τ0) dt = f(τ0). (4.1)

We discretize the Dirac distribution on a grid tn = n∆t, where ∆t > 0 is the same time step that
is used to solve the elastic wave equation. We obtain the discrete time series dn, n = 0, 1, 2, . . .
by imposing moment conditions such that (4.1) is satisfied for the polynomial functions f(t) = tq,
q = 0, 1, . . . , Q, in the sense

∆t

∞∑
n=0

tqndn = τ q0 , q = 0, 1, . . . , Q.

This leads to Q+1 conditions for the coefficients dn. The specification of the grid function is made
unique by enforcing dn = 0 except at Q+1 consecutive grid points surrounding t = τ0. Note that τ0
is not required to coincide with a time step. This procedure is similar to the spatial discretization
of point force and moment tensor sources, see [14] for details.
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Figure 4.8: GaussianWindow with ω = 3.14, t0 = 0, and Nc = 5.

The discretized Dirac distribution triggers all frequencies on the mesh, including completely
unresolved and unphysical motions. The numerical solution is therefore meaningless unless it is
filtered to remove the unresolved motions. The filtering can either be done after the simulation
is completed, or by using the prefilter command. The Dirac time function can also be useful for
calculating “numerical” Green’s functions.

4.3 Discrete time function

The discrete time function uses a quintic (piecewise 5th order polynomial) spline function to in-
terpolate the discrete function values gj = g(τj), for j = 1, 2, . . . , Ns, where Ns ≥ 7. The function
values are specified on an equidistant grid in time, τj = t0 + (j − 1)δt. The step size, δt > 0, can
be chosen independently of the time step that is used to solve the elastic wave equation. The start
time, t0, can also have an arbitrary value. The interpolation procedure results in six polynomial
coefficients for each interval τj ≤ t < τj+1. The coefficients are chosen such that g(t) becomes four
times continuously differentiable.

It is necessary to evaluate the discrete time function throughout the simulation of the elastic
wave equation, i.e., for 0 ≤ t ≤ T . If the time series starts at t0 = τ1 > 0, the discrete time
function is evaluated using the polynomial coefficients corresponding to the first interval [τ1, τ2] for
all 0 ≤ t < τ1. Similarily, if the last data point in the time series has τNs < T , the coefficients of the
last interval are used to evaluate the function for τNs < t ≤ T . To avoid unexpected results due to
extrapolation, we recommend specifying the discrete time function for all t ∈ [0, T ]. Furthermore,
to avoid incompatibilities between the forcing and the homogeneous initial conditions, we also
recommend setting gj = 0 for all τj ≤ 0.

The file format for a discrete time function is decribed in Section 12.1.
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Figure 4.9: Magnitude of the Fourier transform of d/dt(Brune) (dark blue), the Gaussian (green),
the RickerInt (red), and the Ricker (light blue) time-functions. Here freq=1.5 for the Gaussian
and d/dt(Brune), and freq=0.25 for Ricker and RickerInt.

4.4 What is the frequency content in the time function?

Figure 4.9 displays the absolute values of the Fourier transforms of the functions Gaussian, Rick-
erInt, Ricker, and the time derivative of the Brune function. Inspection of the mathematical
definitions of the Gaussian and Brune functions shows that the freq parameter specifies the an-
gular frequency for these functions, while it specifies the (regular) frequency for the Ricker and
RickerInt functions. More generally, the relation between the fundamental frequency f0 and the
freq parameter is given by

f0 =

 freq, for Ricker, RickerInt, VerySmoothBump, C6SmoothBump,
freq

2π
, for Liu, Brune, BruneSmoothed, Gaussian, GaussianInt, and GaussianWindow.

(4.2)
The plots in Figure 4.9 were made with frequency parameter freq=0.25 for the Ricker and RickerInt
functions and frequency parameter freq=1.5 for the Gaussian and d/dt(Brune) functions. Hence,
f0 ≈ 0.25 for all functions in Figure 4.9. Note that the Fourier transform of the d/dt(Brune)
function decays much slower than the other functions for high frequencies. This is due to its lack
of smoothness at t = t0.

It is the highest significant frequency, fmax, that generates the shortest waves and therefore
determines how fine the computational grid must be. For practical purposes fmax can be defined
as the frequency where the amplitude of the Fourier transform falls below 5 % of its max value.
We have

fmax ≈


2.5f0, Ricker, RickerInt, Gaussian time functions,

3.0f0, C6SmoothBump time function,

4.0f0, d/dt(Brune) time function.

(4.3)

27



In other words, simulations using the Brune function are hard to resolve on the grid and need a
significantly finer grid than the other time functions to give reliable results. The relation between
the fundamental frequency f0 and the highest significant frequency fmax in (4.3) is very important.
For time functions that not are listed in that formula, it is possible to estimate fmax with the help
of the matlab/octave scripts fcnplot.m and ftfcnplot.m in the tools directory.

It is important to remember that the estimated highest frequency content in (4.3) assumes that
t0 is sufficiently large to avoid unresolved transients due to a sudden start. Some time functions are
identically zero for t < t0. For those functions all t0 ≥ 0 give reliable results. For time functions
that have an exponential tail for t < t0, it is important that this tail is sufficiently small for t = 0.
In particular, we recommend

t0 ≥ 6σ, σ =

{
1/freq, Gaussian and GaussianInt,

1/
√
2π freq, Ricker and RickerInt.

We remark that inspecting the Fourier transform of a time function only makes sense for
functions that tend to zero for large times. Functions such as GaussianInt, Liu, Brune, and
BruneSmoothed tend towards unity for large times. Their zero frequency (DC) component there-
fore grows linearly with the length of the time interval, T . These functions need to be differentiated
before applying the Fourier transform.

4.5 How to choose the grid size

The most difficult parameter to choose when preparing the input file is probably the grid size, h.
It is extremely important to use a grid size that is sufficiently small, because you must resolve the
waves that are generated by the source. On the other hand you don’t want to use an unnecessarily
small grid size, because both the execution time and the memory requirements increase rapidly
when the mesh is refined.

The number of grid points per shortest wavelength, P , is a normalized measure of how well
a solution is resolved on the computational grid. Since the shear waves and surface waves have
approximately the same wave length and propagate at approximately the same speed, we can
estimate the shortest wave length by

Lmin =
minCs

fmax
.

Here Cs is the shear velocity of the material and fmax is the largest significant frequency in the
time function g(t), as discussed above. Hence the number of grid points per wave length equals
Lmin/h, which is given by

P =
Lmin

h
=

minCs

h fmax
. (4.4)

Note that h needs to be made smaller to maintain the same value of P if either Cs is decreased or if
the frequency is increased. In formula (4.4), minCs is found from the material properties and h is
determined by the input grid specification. The frequency spectrum of the solution is determined
by the frequency spectrum of the time function and fmax can be estimated from equation (4.3).
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4.5.1 Lamb’s problem

The accuracy of the numerical solution, including the implementation of a point force and the
reflection properties of the super-grid far field boundary condition, can be tested by solving Lamb’s
problem [10]. This problem simulates the motion due to a vertical point force applied on the free
surface of a homogeneous elastic half-space.

We have implemented Mooney’s formulas [12] for solving Lamb’s problem. These formulas give
an analytical expression for the Green’s function of the vertical component along the free surface,
z = 0. This Green’s function is convolved with the source time function to give the displacement
as function of time. We use a C6SmoothBump time function and the convolution is performed by
numerical quadrature using the Quadpack library. This approach allows the displacement to be
evaluated to within 12 decimal places. Lamb’s problem is then solved numerically using SW4 and
the error in the vertical component is evaluated along the free surface. To evaluate how fine the grid
needs to be, we repeat the test for different grid sizes. See the paper by Petersson and Sjogreen [17]
for further details.

In this example, the elastic half-space consists of a homogeneous material with shear wave
velocity Cs = 1000 m/s, compressional wave velocity Cp = 1000

√
3 m/s, and density ρ = 1500

kg/m3. The elastic half-space is truncated to the computational domain

(x, y, z) ∈ [0, 10000]× [0, 10000]× [0, 5000].

The source is placed on the free surface in the center point of the horizontal plane: (5000, 5000, 0).
The time dependency of the forcing is a “C6SmoothBump” (see Figure 4.7) with ω = 1 Hz, t0 = 0
s and magnitude 1013 N. The above setup is created with the input file shown below, which can be
found in examples/lamb/seismic1.in

grid nx=151 x=10e3 y=10e3 z=5e3

time t=5.0

supergrid gp=60

block vp=1.7320508076e+03 vs=1000 rho=1500

source type=C6SmoothBump x=5e3 y=5e3 z=0 fz=1e13 freq=1 t0=0

rec x=5e3 y=6e3 z=0 file=v1 sacformat=0 usgsformat=1

Because the frequency parameter of the C6SmoothBump time function is f0 = 1 Hz and Cs = 1000
m/s, the dominant wave length in the solution is about 1,000 meters. Hence the receiver is located
approximately one wave length from the source.

It is well known that the error in numerical solutions of wave propagation problems is dominated
by phase errors [8]. It is therefore interesting to investigate how the accuracy in the numerical
solution depends on the distance between the source and receiver. For this reason, we expand
the above calculation to include a second receiver at distance 10,000 meters from the source. This
input file is given in examples/lamb/seismic2.in. In this case, we evaluate the solution of Lamb’s
problem using the Fortran program src/lamb one point.f. The vertical displacements and errors
are shown in Figure 4.10. The waveforms are smooth and the problem appears to be well resolved.
Because of geometric spreading, the amplitude of the exact solution decreases with the distance
from the source. At the same time, the amplitude of the error increases. This is because the
numerical solution accumulates discretization errors as it propagates through the computational
grid.

We show the errors in the vertical displacement in Table 4.1. The errors are presented in
max norm, normalized by the max norm of the exact solution. The frequency parameter in the

29



Figure 4.10: Lamb’s problem: Vertical displacement at 1,000 (blue) and 10,000 (red) meters from
the source. The green and light blue lines show the corresponding errors in the numerical solution
with h = 200/3, corresponding to P = 5 grid points per shortest wave length. The displacement is
offset by 1 for the second recording.

C6SmoothBump time function is f0 = 1 Hz. Following (4.3), we estimate the highest significant
frequency to be fmax = 3.0 Hz. In this case the formula for the number of grid points per wave
length (4.4) becomes

P =
1000

3h
.

Also note how quickly the total number of grid points (NGP ) increases when the grid is refined.
The errors are also plotted in Figure 4.11. The error decreases at a rate approaching O(h4) for

the finest grid, indicating that the numerical method and the discretization of the point force are
fourth order accurate. For the same grid size, note that the error is about 7.5 times larger at 10
km from the source, compared to 1 km. To get the same accuracy at 10 km from the source, the
grid size must be reduced by a factor of (7.5)1/4 ≈ 1.65, i.e., the number of grid points per wave
length must be increased by the same factor.

From this experiment we conclude that the accuracy in SW4 depends on the distance between
the source and the receiver, which can be normalized by the dominant wave length in the solution.
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h P ∥e(z)1 ∥∞/∥U (z)
1 ∥∞ ∥e(z)10 ∥∞/∥U (z)

10 ∥∞ NGP

200/3 5 7.17 · 10−2 4.31 · 10−1 3.0 · 107

50 6.7 3.44 · 10−2 2.43 · 10−1 7.3 · 107

100/3 10 9.31 · 10−3 6.99 · 10−2 2.4 · 108

25 13.3 3.25 · 10−3 2.42 · 10−2 5.8 · 108

Table 4.1: Lamb’s problem: Relative max norm errors in the vertical displacement at 1, 000 and
10, 000 meters from the source. Here, h is the grid size, corresponding to P grid points per shortest
wave length. Also, NGP is the total number of grid points in the 3-D grid.

Figure 4.11: Lamb’s problem: Error in max norm as function of the number of points per wave
length at 1,000 meters (blue) and 10,000 meters (green) from the source. The dotted lines indicate
the asymptotic decay of the error in a fourth order accurate method.
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For most practical purposes the accuracy is acceptable when

6 ≤ P ≤ 10,

but the exact number depends on the required accuracy. The ratio between the compressional and
shear velocity, Cp/Cs, can also have a significant influence on the accuracy of the solution, and the
number of grid points per wave length must be increased for materials with large Cp/Cs, see [9].

We finally remark that the best way of checking the accuracy in a numerical simulation is to
repeat the calculation on a finer mesh and compare the results. Unfortunately, this approach is
seldomly used in realistic situations because the computational cost increases too rapidly as the
mesh is refined.
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Chapter 5

Topography

The topography command in SW4 is used to specify the shape of the top surface of the computa-
tional domain,

z = τ(x, y).

The topography can currently be described in one of four ways: a Gaussian hill (§ 5.1), by the
elevation on a latitude-longitude grid (§ 5.2), through a rfile raster file (§ 5.4), an sfile (§ 5.5),
or by using a gmg (§ 5.6)file.

A curvilinear grid is automatically constructed between the topography surface and a user
specified depth z =zmax. If no topography command is present in the input file, the top surface is
taken to be the plane z = 0, and no curvilinear grid is constructed. When the topography surface
z = τ(x, y) varies between τmin ≤ z ≤ τmax (z is positive downwards), the grid generation usually
works well if

zmax ≥ τmax + 3(τmax − τmin), (5.1)

Sometimes it is easier to think in terms of elevation, e(x, y) = −τ(x, y), because e is positive
above mean sea level. Another way of stating (5.1) is to set the elevation of the bottom grid line
in the curvilinear grid to satisfy

egrid ≤ emin − 3(emax − emin), emin ≤ e(x, y) ≤ emax. (5.2)

You then set zmax= −egrid.
After reading the topography, SW4 prints out the min and max z-coordinates, as well as the

specified value of zmax. For example,

***Topography grid: min z = -1.1443e+03, max z = 1.0929e+03, \

top Cartesian z = 8.000000e+03

Here, τmin = −1144.3, τmax = 1092.9 and zmax= 8000. We have τmax + 3(τmax − τmin) = 7804.5,
which satisfies (5.1). Alternatively, in terms of elevation, emax = 1144.3 and emin = −1092.9, so
emin − 3(emax − emin) = −7804.5 and egrid = −8000, which satisfies (5.2).

Except for the Gaussian hill topography, the topography surface is smoothed by a Jacobi iter-
ation before the curvilinear grid is generated,. The purpose of the smoothing is to ensure that the
variations in topography can be resolved on the computational grid. By default, 10 iterations are
performed and this gives a satisfactory result in many cases. It is possible to change the number
of iteration by using the smooth option in the topography command. You can inspect the result of
the smoothing by saving the top grid surface in an image file,
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image mode=grid z=0 cycle=0 file=test

Note that the z coordinate (positive downwards) is saved on a grid image file, while the elevation
(positive upwards) of the raw (before smoothing) topography is saved on a topo image file (obtained
by specifying mode=topo instead of mode=grid).

5.1 Gaussian hill topography

The simplest type of topography is a Gaussian hill, i.e., a topography described by the Gaussian,

τ(x, y) = Ae−((x−xc)/Lx)2−((y−yc)/Ly)2 .

The user can place one Gaussian hill at a location specified by (xc, yc), in the (x, y)-plane. Further-
more, the user can adjust the amplitude of the hill, A, as well as its spread in the x and y-directions,
Lx and Ly respectively. The Gaussian hill topography command has the following syntax:

topography input=gaussian zmax=7.5 gaussianAmp=2.4 \

gaussianXc=3.6 gaussianYc=2.4 \

gaussianLx=0.25 gaussianLy=0.3

Note the zmax option, which tells SW4 to extend the curvilinear grid to z = 7.5. The most
common use of the Gaussian hill topography is for testing, see for example the input scripts in
examples/twilight:

gauss-twi-1.in gauss-twi-2.in gauss-twi-3.in

5.2 Topography grid file

The topography can be given on a regular lattice in geographical (lat, lon), or Cartesian (x, y) coor-
dinates. This approach works well together with the block, pfile, and ifile material commands.
It can also be used together with the rfile or sfile commands, but in those cases it is important
that the topography is consistent with the material data, because it is given relative to mean sea
level (z = 0).

To setup the topography, you can give the command

topography input=grid file=grenobleCoarse.topo zmax=3000 order=2

The file grenobleCoarse.topo holds the elevation (in meters) relative to mean sea level and must
conform to the simple ASCII text format described in Section 12.4. In the above case, a curvilinear
grid is constructed between the topography surface and z = 3000, and the order=2 option specifies
a second order polynomial stretching in the curvilinear mapping function. The topography is shown
in Figure 5.1.

5.3 efile topography

We deprecated the ability to read an efile in SW4. Users are advised to use sfile or gmg formats.
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Figure 5.1: Topography in the vicinity of Grenoble, France.

5.4 rfile topography

The first block in an rfile raster file contains the topographic information. You can setup the
computational grid to follow this topography by using the following command,

topography input=rfile zmax=2e3 order=3 file=berkeley.rfile

Here, the topography command tells SW4 to read the topography from the specified rfile. The
order=3 option specifies the type of stretching to use when making the curvilinear grid, and the
zmax=2e3 option tells SW4 to put the bottom boundary of the curvilinear grid at z = 2000.

Note that the topography must be described by the same rfile as the material model, see
Section 6.3 for further information. The format for the rfile is described in Section 12.5.

5.5 sfile topography

The sfile also contains the same topography data as rfile, and can be accessed using the topo

input=sfile argument. See Section 6.4 for more information.

5.6 gmg topography

The gmg also contains topography data, and can be accessed using the topo input=gmg argument.
See Section 6.5 for more information.
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Chapter 6

The material model

In SW4, an isotropic elastic material model is defined by the grid point values of the density
(ρ), the compressional velocity (Vp), and the shear velocity (Vs). The material properties can be
specified by the block command (§ 6.1), the rfile command (§ 6.3), the pfile command (§ 6.6),
the ifile command (§ 6.7), the gmg command (§ 6.5), or by a combination of them. If the same
computational grid is used for several simulations, the material model can also be obtained through
the vimaterial command, assuming that it was initially saved using the volimage command. See
§ 6.8 for details.

This chapter only discusses isotropic elastic materials. See Chapter 8 for isotropic visco-elastic
material models and Section 11.3.11 for anisotropic elastic models.

SW4 requires that the material model is defined for all interior and boundary grid points in the
computational grid, as defined by the grid and optionally the topography commands. Note that
SW4 also uses two layers of ghost points, just outside the computational domain. If the material
model is not defined for ghost points, its properties are extrapolated from the nearest boundary
point. In other words, SW4 does not require the material model to be defined at the ghost points,
but will use it if it is provided. This is a change from WPP.

The order within the material commands (block, pfile, rfile, sfile, gmg, and ifile) does matter
(unlike all other commands) in that the priority of the material command increases towards the
end of the input file. Hence, a material command in the input file can be completely or partially
overridden by subsequent material commands.

In the block, pfile, and ifile commands, material properties are assigned based on the depth
below the free surface. This means that the internal material model depends on the topography,
but the material properties along the free surface will always be the same, independent of the
topographic model. For the rfile and sfile commands, material properties are defined as functions
of the z-coordinate, i.e., relative to mean sea level (z = 0). In this case the topography information is
embedded in the material description. The rfile command should always be used with topography
from the same rfile.

After reading all material commands in the input file and assigning material properties to the
computational grid, SW4 outputs general information about the ranges in the material model. For
a purely elastic material, the output looks like
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----------- Material properties ranges ---------------

1590 kg/m^3 <= Density <= 3300 kg/m^3

768 m/s <= Vp <= 7790 m/s

500 m/s <= Vs <= 4420 m/s

1.536 <= Vp/Vs <= 4.48

3.975e+08 Pa <= mu <= 6.44701e+10 Pa

1.4282e+08 Pa <= lambda <= 7.13863e+10 Pa

------------------------------------------------------

It is always a good idea to check that these numbers are reasonable before proceeding with the
simulation. In addition, we recommend inspecting the material model along a few image planes.

Before the simulation is started, SW4 checks that density, Vp, and Vs are positive at all grid
points. In addition, it is verified that the first Lamé parameter satisfies λ > 0, that is Vp/Vs >

√
2.

If either of these conditions is violated, the program stops with an error message. You can obtain
more detailed diagnostics by setting verbose=3 (or higher) in the fileio command.

6.1 The block command

The block command can be used to specify material properties in rectangular volumes of the
computational domain, either with constant values or linear vertical gradients. By combining the
block command with the sub-region options we can define a material model composed of three
layers:

block vp=4000 vs=2500 rho=2000

block vp=6000 vs=3500 rho=2700 z1=15000

block vp=8000 vs=4500 rho=3300 z1=35000 z2=100000

In this case the top layer has a thickness of 15 km, the middle layer 20 km and the lower layer 65
km. Because these block commands do not specify horizontal coordinates, the values extend to the
grid boundaries in both horizontal directions. To add a box shaped inclusion of a new material we
could add the following line

block vp=3000 vs=2000 rho=1000 \

x1=4000 x2=8000 y1=3000 y2=7000 z1=10000 z2=70000

An image of Vp in the plane x = 50, 000 is shown in Figure 6.1 (left).
Several block commands can be combined to generate more complicated material models, for

example

block vp=8000 vs=4500 rho=3300 vpgrad=-0.01

block vp=3000 vs=2000 rho=1000 \

x1=1e4 x2=9e4 y1=1e4 y2=9e4 z1=1e4 z2=9e4 vpgrad=0.02

block vp=4000 vs=2500 rho=2000 \

x1=15e3 x2=85e3 y1=15e3 y2=85e3 z1=15e3 z2=85e3

block vp=6000 vs=3500 rho=2700 \

x1=15e3 x2=85e3 y1=15e3 y2=85e3 z1=45e3 z2=55e3

block vp=6000 vs=3500 rho=2700 \

x1=15e3 x2=85e3 z1=15e3 z2=85e3 y1=38e3 y2=45e3

This material is displayed on the right side of Figure 6.1.
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Figure 6.1: Examples of material models specified with the block command.

6.2 The efile command

We deprecated the ability to read an efile in SW4. Users are advised to use sfile or gmg formats.

6.3 The rfile command

Amaterial raster file (rfile) can be used for storing material properties and topography/bathymetry.
It uses a binary, block-structured, data format that allows material properties to be represented
with finer spatial resolution near the surface of the earth. Topography/bathymetry information is
described by the first block of the raster file. The grid sizes in the rfile are independent of the
grid size in the computational grid. The rfile parser in SW4 attempts to determine the byte
ordering and automatically swap the bytes if it encounters little-endian ordering on a big-endian
machine, or vice versa.

There are two main reasons why the raster file format is ideally suited for large material models
with heterogeneous properties. First, the data on an rfile is organized to allow each core to
only read the relevant part of the file, thus saving memory. Secondly, the rfile format can be
read in parallel (if a parallel file system is available). In this approach, only a subset of the cores
(processors) interact with the file system, and the data is propagated to all other cores using
calls to the MPI library. The parallel reading capability of the rfile format has been shown to
scale well on up to 131,072 cores. In practice, it is the most important advantage over the efile

format (deprecated since 2021) and allows material models of the same complexity to be read
significantly faster.

Material properties in the rfile are stored internally on a block-structured grid, and relies on the
proj.4 library to map between Cartesian and geographic coordinates. The rfile command can
therefore only be used if SW4 has been linked with the proj.4 library. See [19] for instructions.

It is important to note the bounds of the geographical region in the material model. Assuming
that the computational domain is contained within those bounds, and the azimuth of the grid
agrees with the rfile, the following command sets up the material model:

grid x=12e3 y=12e3 z=5e3 nx=601 lat=37.93 lon=-122.25 az=143.6380 proj=tmerc \

datum=NAD83 lon_p=-123.0 lat_p=35.0 scale=0.9996
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rfile filename=USGSBayAreaVM-08.3.0.rfile directory=/Users/petersson1

To verify that the computational domain is inside the rfile, we recommend checking the geo-
graphical coordinates on a map during the construction of the input file. We often use the Google
Earth program for this purpose. The restriction that the azimuth of the computational grid must
agree with the azimuth of the rfile is made to simplify the parallel reading algorithm.

The topography and material properties are evaluated on the computational grid using linear
interpolation from the underlying grid in the rfile format. When the computational grid is finer
than the grid in the rfile, the interpolation leads to some smoothing, see Figure 6.2. In this case,

Figure 6.2: The compressional wave speed (CP ) along the topography using the rfile (left) and
the efile (deprecated since 2021) (right) commands. Here, the computational grid has size
h = 20 m, while the horizontal grid sizes of the rfile and efile are both hh = 100 m. Notice the
stair-stepping in the right figure.

Figure 6.3: The compressional wave speed in a vertical cross-section, using the rfile (left) and
the efile (right) commands. Here, the computational grid has size h = 20 m. Near the surface,
the grid sizes of the rfile and efile are both hh = 100 m in the horizontal direction and hv = 25
m in the vertical direction. Below z = 400, the horizontal and vertical grid sizes are doubled.
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the rfile was generated by copying the topography and material properties from the efile, using
the same resolution in both file formats. A vertical cross-section of the same model is shown in
Figure 6.3.

The query routines for the efile format define constant material properties in each cell, while
the reader of a rfile uses linear interpolation to define properties in between the grid point
values. Thus, material discontinuities (such as the vertical fault line) are maintained by the efile
command, but become slightly smeared out by the rfile command. On the other hand, the efile
interpretation of the material properties on either side of the fault line leads to stair-stepping
artifacts, while the linear interpolation of the rfile command results in a much smoother model.

6.4 The sfile command

The sfile command (“s” being the next letter after “r”), was created to include a depth-based
curvilinear grid for the material model, which provides finer resolution close to the surface and
avoids storing “air” or “water” points above the surface. It also includes the ability to write the
material model for seismic inversion calculations (using the sfileoutput command, see SW4-mopt
documentation).

sfile filename=USGSBayAreaVM-08.3.0.sfile directory=/path/to/sfile

The file contents are similar to the rfile file, but are defined with internal (curvilinear) refine-
ment boundaries, and all 5 material properties. Note that the rfile caveats about the computa-
tional domain still apply, and geographical region bounds should all be checked against the sfile’s
origin, (nx,ny), hh, z bot, etc.

Figure 6.4 shows a schematic of the data layout in a 2D slice of the sfile domain. The material
data grids and interfaces are numbered from the top to bottom, with the very bottom interface
assumed to be flat (constant z bot). Each grid is bounded above by a z interface * (“*” is the same
grid index) at the same constant horizontal grid resolution, hh. The very top interface is the finest
topography used by SW4 topo command for the computational domain. The number of vertical
points is constant, and the vertical grid resolution hv is constant along each grid line (but different
across grid lines) when there is topography. The refinement boundaries halve the horizontal grid
resolution from bottom to top, and double the number of grid intervals. In order to avoid gaps
at refinement boundaries, the bottom interfaces of the upper grid are defined as co-linear points
calculated from the top interface of the lower grid.

See 11.3.5 for usage information and 12.6 for HDF5 file format details.

6.5 The gmg command

The gmg command uses data stored in the GeoModelGrids format (developed by Brad Aagard
from USGS, https://geomodelgrids.readthedocs.io), which has georeferenced grid-based earth
models composed of blocks with different grid resolutions. The latest San Francisco Bay region
3D seismic velocity model (v21.1, released on December 9, 2021) can be downloaded at https://
www.usgs.gov/data/san-francisco-bay-region-3d-seismic-velocity-model-v211. The gmg
command has the same syntax with rfile and sfile:

gmg filename=USGS_SFCVM_v21-1_detailed.h5 directory=/path/to/gmgfile/
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Figure 6.4: A schematic of the grid and data layout in sfile files. Material data lives at grid points
(black circles) on grids specified by their grid index, horizontal grid spacing, and number of points
along grid lines connecting the top and bottom interfaces. In this case, there are 3 total grids of
material data, starting from a constant elevation at the bottom of the domain, then separated by
two interior interfaces, with the domain topography on top.

The file contents are similar to the sfile format, both are using HDF5 as the underlying file
format, but they use different schema and curvilinear refinement boundaries. More tools and
descriptions about the GeoModelGrids are available at https://github.com/baagaard-usgs/

geomodelgrids and https://geomodelgrids.readthedocs.io).
See Section 11.3.6 for more details options.

6.6 The pfile command

The pfile command can be used to assign material properties based on depth profiles. A pfile
contains the values of the model features (P-velocity, S-velocity, density, and optionally the attenu-
ation factors QP and QS) as function of depth at points on a regular lattice covering the horizontal
extent of the computational domain. The points on the lattice are either defined by their latitude
and longitude coordinates, or by the x and y-coordinates. The number of grid points in the depth
direction needs to be the same for all profiles, but the grid spacing does not need to be uniform and
can also be different for each profile. Material discontinuities can be represented by two material
values for the same depth value. Material layers, which only occur in a subset of the profiles, can
be tapered to have zero thickness in the remaining profiles. This is handled by introducing multiple
data points with the same depth and material values in a profile.

The lattice of the pfile does not need to have any relation to the computational mesh used in
SW4 and is often much coarser. The material properties in the computational mesh are assigned
values using Gaussian averaging between the nearest NG × NG profiles in the latitude-longitude
plane and linear interpolation in the depth direction. Let the grid point have longitude θ, latitude
ϕ and depth d. Material properties are first linearly interpolated in the depth direction along each
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Figure 6.5: The smoothingsize parameter can be used to average out imprinting from the hori-
zontal lattice in a coarse pfile material model. Here we show VP in the plane x = 3, 500 as function
of y and −z. In this case, smoothingsize=1 in the top left, smoothingsize=3 in the top right,
smoothingsize=4 in the bottom left, and smoothingsize=5 in the bottom right plot.

profile and then averaged in the latitude-longitude plane. The number of points in the Gaussian
averaging, NG, is assigned by the user in the pfile command. For example, the following line in
the input file makes SW4 read a pfile named material.ppmod:

pfile filename=material.ppmod vsmin=1000 vpmin=1732 smoothingsize=4

The optional vsmin and vpmin keywords are used to assign minimum threshold values for the
P - and S-velocities, respectively. Here, smoothingsize=4 means that NG = 4 in the Gaussian
averaging. A larger value of NG (≥ 5) is particularily useful to avoid staircasing imprints when
the computational grid is much finer than the pfile lattice, see Figure 6.5. The smoothingsize

keyword can be assigned any number greater than or equal to one.
When NG is odd, the Gaussian averaging starts by finding the closest grid point on the latitude-

longitude lattice, (ϕi, θj). The material property c (ρ, Vp, Vs, Qs, or Qp) is assigned by the formula

c(ϕ, θ) =

∑i+W
m=i−W

∑j+W
n=j−W cm,nωm,n∑i+W

m=i−W

∑j+W
n=j−W ωm,n

, W =
NG − 1

2
, (6.1)
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where the weights are given by

ωm,n = e−[(ϕm−ϕ)2+(θn−θ)2]/α2
, α =

NG∆

2
√
− log 10−6

,

where the parameter ∆ is given in header of the pfile (on line 2). It should approximately equal
the grid size in latitude and longitude (which do not have to be equal). This choice of α makes
the weights ωm,n < 10−6 for points that are further from (ϕm, θn) than NG∆/2, which justifies the
truncation of the series in (6.1). A similar procedure is used for even values of NG, but in this
case the averaging formula (6.1) is centered around the nearest cell center on the latitude-longitude
lattice.

By default the pfile data are assumed to be given in latitude-longitude coordinates. It is also
possible to read pfiles where the data is given on a Cartesian grid in (x, y)-coordinates. To indicate
that the pfile contains data on a Cartesian grid, use the style option as in the following example:

pfile filename=materialxy.ppmod vsmin=1000 vpmin=1732 smoothingsize=4 \\

style=cartesian

Data files for the pfile command are written in an ASCII text format. See Section 12.3 for a
description of both the latitude-longitude pfile and the Cartesian pfile grid formats.

6.7 The ifile command

The ifile command reads a file holding the depth to material interface surfaces. The material
properties between each pair of material surfaces must be defined by the material command. The
depth must be non-negative. Zero depth corresponds to the topography. Material surfaces are spec-
ified on a regular lattice in gegraphic coordinates. The unit for depth is meters, while latitude and
longitude are in degrees. The ifile command may be combined with other material specifications
and it is not necessary that the lattice in geographical coordinates covers the horizontal extent of
the computational domain.

Let Nmat ≥ 1 material surfaces be known at longitudes

ϕi, i = 1, 2, . . . , Nlon,

and latitudes
θj , j = 1, 2, . . . , Nlat,

Note that the latitudes and the longitudes must either be strictly increasing or strictly decreasing,
but the step size may vary. Also note that the lattice points are independent of those in the
topography command.

The material surfaces should be given on the regular lattice

dq,i,j = depth to surface number q at longitude ϕi, latitude θj .

The material surfaces correspond to material properties in the following way. At longitude ϕi,
latitude θj material number 1 (as defined by thematerial command) occupies depths 0 ≤ d ≤ d1,i,j .
Material number 2 occupies depths d1,i,j ≤ d ≤ d2,i,j , and so on. If d1,i,j = 0, material number 1 is
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not used. Similarily, material number k > 1 is not used if dk−1,i,j = dk,i,j . Material properties are
only defined for depths down to the last surface, i.e.,

0 ≤ d ≤ dNmat,i,j .

If the computational domain extends below the last material surface, it is necessary to use other
commands to define the material properties in those regions.

The material properties can have a constant, linear, quadratic, and square root dependence of
depth. For example, the most general dependence for density is

ρ(d) = ρk,0 + ρk,1d+ ρk,2d
2 + ρk,1/2

√
d, dk−1,i,j ≤ d < dk,i,j .

Bi-linear interpolation in longitude and latitude is used to define the material surfaces in between
the data points. Note that only constant values are supported for the quality factors (QP and QS)
within each material.

The ifile file format is described in Section 12.4.

6.8 The vimaterial command

The vimaterial command is intended to speed up the reading of large material models for cases
when many simulations use the same computational grid. In order for this command to work, the
grid and topography commands must be identical between runs. An initial run must construct
the material model using the commands described in the previous sections (block, pfile, ifile).
The initial run must also save the material model using the volimage command. Each of these
commands saves one scalar property per file, so three files must be saved for an elastic material.
In subsequent simulations the vimaterial command can replace the initial material model. This
approach works the best on machines with a fast (parallel) file system. Also note that the volimage
files can easily become very large, because the material properties are saved at each grid point.

For example, if the material model and the topography are given in the etree format, the initial
run reads this information and saves it on 5 separate volimage files,

fileio pfs=1 path=MaterialModel

grid x=275e3 y=120e3 z=40e3 h=400 lon=-122.688 lat=39.009 az=142.25

topography input=rfile file=USGSBayAreaVM-08.3.0.rfile zmax=8e3 order=3

attenuation nmech=3 phasefreq=1 maxfreq=10

volimage mode=rho file=Lp cycle=0 precision=double

volimage mode=mu file=Lp cycle=0 precision=double

volimage mode=lambda file=Lp cycle=0 precision=double

volimage mode=qp file=Lp cycle=0 precision=double

volimage mode=qs file=Lp cycle=0 precision=double

The volimage files are written in the MaterialModel subdirectory, as specified by the path option
in the fileio command.

Subsequent runs, that use identical grid and topography commands, can read the material
model directly from the volimage files,
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fileio pfs=1 path=OtherRun

grid x=275e3 y=120e3 z=40e3 h=400 lon=-122.688 lat=39.009 az=142.25

topography input=rfile file=USGSBayAreaVM-08.3.0.rfile zmax=8e3 order=3

attenuation nmech=3 phasefreq=1 maxfreq=10

vimaterial path=MaterialModel rho=Lp.cycle=0.rho.3Dimg mu=Lp.cycle=0.mu.3Dimg \

lambda=Lp.cycle=0.lambda.3Dimg qs=Lp.cycle=0.qs.3Dimg \

qp=Lp.cycle=0.qp.3Dimg

Note that a path can be specified in the vimaterial command, and that the fileio command
now writes the results to a different directory.
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Chapter 7

Mesh refinement

The refinement command in SW4 enables the user to locally refine the computational mesh in
areas where finer resolution is needed, i.e., where the wave speed is small. In order to maintain a
constant resolution in terms of the number of grid points per wavelength for a given frequency (see
Equation (4.4)), the grid size should be adjusted such that the ratio Vs/h becomes approximately
constant over the computational domain. In SW4, we use a composite grid approach consisting of
a set of structured component grids with hanging nodes on the grid refinement interfaces. This
allows the grid resolution to follow the main variations in wave speed, and gives ideal wave propa-
gation properties in each component grid. To assure stability of the numerical scheme, an energy
conserving coupling approach is used to couple the solution across grid refinement interfaces.

When using mesh refinement, the extent of the computational domain is determined by the grid
command, which also specifies the grid size in the coarsest component grid,

grid h=2000 x=40000 y=40000 z=40000

The two refinement commands

refinement zmax=23000

refinement zmax=6000

specify two mesh refinement interfaces: z1 = 23000, and z2 = 6000. As a result, the composite grid
contains three component grids, where the coarsest component has grid size h = 2000 and covers
the bottom of the computational domain: z1 ≤ z ≤ 40000. Next refinement grid has half the grid
size (h = 1000) and covers z1 ≤ z ≤ z2. The grid size in the third component is another factor of
two smaller (h = 500) and covers the top of the computational domain: z2 ≤ z ≤ 0. The composite
grid is shown in Figure 7.1, where the grid is plotted in the vertical x = 20000 plane. Note that
refinement grids are aligned in the sense that every second grid point coincides with a grid point
in the next coarser grid.

The summation by parts finite difference boundary stencil is used at the interfaces between
the component grids. This stencil is applied at six points near the boundary, and is eight points
wide, which leads to a minimum requirement on the number of grid points in the z-direction. On
component grids where both the upper and lower boundaries are interfaces to another grid, or has a
free surface boundary condition, there has to be at least 12 grid points in the z-direction. However,
on grids where only one of the upper or lower boundaries is an interface to another grid, or has a
free surface boundary condition, eight grid points are required in the z-direction. SW4 will stop
with an error message if the number of grid points in the z-direction is below either of these limits.
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Figure 7.1: Composite grid with two mesh refinement interfaces and three Cartesian grids.

Normally, the eight grid point limit would only be tested at the bottom of the computational
domain, which by default uses a supergrid damping layer. Note that the supergrid layer is 30 grid
points thick (by default), and must be fully contained in the bottom grid.

Mesh refinement can also be used together with topography. Here we use an example from a
simulation of the 2007 Alum Rock earthquake. The composite grid is setup with the commands

grid x=100e3 y=100e3 z=40e3 lat=38.0 lon=-121.8 az=143.638 h=2000

refinement zmax=23e3

refinement zmax=12e3

topography input=rfile zmax=6e3 order=2 file=USGSBayAreaVM-08.3.0.rfile

rfile filename=USGSBayAreaVM-08.3.0.rfile

Here the base grid, which always is Cartesian, has grid size h = 2000 and covers 23000 ≤ z ≤ 40000.
Next Cartesian grid has half the grid size (h = 1000) and covers 12000 ≤ z ≤ 23000. The grid size
in the finest Cartesian component grid is reduced by another factor of two, which gives h = 500.
This component extends to the bottom of the curvilinear grid, i.e., 12000 ≤ z ≤ 6000. The vertical
extent of the curvilinear grid is specified by the zmax=6000 option in the topography command, i.e.,
the curvilinear grid covers the domain between z = 6000 and the topography surface, z = τ(x, y).
In the horizontal directions, the grid size in the curvilinear grid is the same as in the finest Cartesian
grid. The number of grid points in the vertical direction is choosen such that the average vertical
grid size is the same as the grid size in the horizontal directions. A portion of the computational
grid is shown in the vertical cross section x = 50000, see Figure 7.2.

After constructing the computational grid, SW4 outputs information about the number of grid
points in each component grid. For the above example, we get

Global grid sizes (without ghost points)
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Figure 7.2: A composite grid with two mesh refinement interfaces and topography. In this case
there are three Cartesian components and one curvilinear grid following a non-planar topography.

Grid h Nx Ny Nz Points

0 2000 51 51 10 26010

1 1000 101 101 12 122412

2 500 201 201 13 525213

3 500 201 201 12 484812

Total number of grid points (without ghost points): 1.15845e+06

Note that most grid points are in grids number 2 and 3, with grid size h = 500. Further down in
the output file, SW4, provides information about the resolution in terms of grid points per wave
length:

***** PPW = minVs/h/maxFrequency ********

g=0, h=2.000000e+03, minVs/h=1.81531 (Cartesian)

g=1, h=1.000000e+03, minVs/h=3.29057 (Cartesian)

g=2, h=5.000000e+02, minVs/h=5.52953 (Cartesian)

g=3, h=5.000000e+02, minVs/h=0.16 (curvilinear)

As is common in seismic applications, the material velocities are the lowest near the free surface,
i.e., in grid number 3 in this case. From this information, we can estimate the highest frequency
that can be reliably propagated on this mesh. To get P = 8 grid points per shortest wave length,
we can use a source time function with maximum frequency

fmax = min
VS

hP
=

0.16

8
= 0.02Hz.

In this case the grid was made very coarse to make Figure 7.2 clearer. The grid size need to be
decreased for practical computations.
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Chapter 8

Attenuation

8.1 Viscoelastic modeling

SW4 implements a linear viscoelastic material model by superimposing n standard linear solid
(SLS) mechanisms, leading to the governing equations

ρ
∂2u

∂t2
= L(λ0, µ0)u−

n∑
ν=1

L(λν , µν)ū
(ν) + F, x ∈ Ω, t ≥ 0, (8.1)

where the spatial operator is

L(λ, µ)u =: ∇(λ(∇ · u)) +∇ · (2µD(u)) , D(u) =
1

2

(
∇u+∇uT

)
. (8.2)

The memory variables, ū(ν), in (8.1) are governed by the differential equations

1

ων

∂ū(ν)

∂t
+ ū(ν) = u, x ∈ Ω, t ≥ 0, (8.3)

for ν = 1, 2, . . . , n, where ων > 0 are the relaxation frequencies. For more details on visco-elastic
modeling and the numerical method used by SW4, we refer to the paper by Petersson and Sjo-
green [16] and the references therein.

There are three components in each of the vector variables u and ū(ν), ν = 1, 2, . . . , n, resulting
in 3 + 3n differential equations for as many dependent variables. Hence, compared to the purely
elastic case, visco-elastic modeling will require more memory and more CPU-time.

The material parameters µν and λν , as well as the relaxation frequencies ων are determined by
Emmerich and Korn’s [6] least-squares procedure. In this approach, the material parameters are
selected such that the quality factors QS and QP become close to constant over a frequency range

ωmin ≤ ω ≤ ωmax.

Because the computational cost of viscoelastic modeling increases with the number of mechanisms,
n, it is desirable to use the smallest value of n that gives acceptable accuracy in the approximation
of Q(ω). In Figure 8.1, we present Q(ω) when the material coefficients are chosen to approximate
Q = 100 in the frequency band ω ∈ [1, 100]. Clearly, n = 2 provides inadequate modeling of a
constant Q over two decades in frequency, but n = 3 gives a much better approximation. Increasing
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Figure 8.1: Actual quality factor Q(ω) approximating Q0 = 100 in the frequency band ω̃ ∈ [1, 100],
for different numbers of viscoelastic mechanisms.

n further only leads to small improvements. It is interesting to note that in all models, Q(ω) grows
rapidly for ω > ωmax. Hence the viscoelastic model does not provide significant damping of higher
(poorly resolved) frequencies in the numerical solution, and does not act as an artificial dissipation.

Wave propagation in visco-elastic materials is dispersive, i.e., the phase velocity of a wave de-
pends on its frequency. Figure 8.2 illustrates that the frequency dependence on the phase velocity
becomes more pronounced when Q gets smaller. Also note that the phase velocity grows approxi-
mately linearly on a logarithmic scale in ω, throughout the frequency band [ωmin, ωmax]. Outside
this band, the phase velocity tends to constant values. Due to the dispersive nature of visco-elastic
materials, it is necessary to specify the reference frequency, ωr, at which the phase velocities are
specified.

In SW4, visco-elastic modeling is enabled by the attenuation command. For example, the
command

attenuation nmech=3 phasefreq=2.5 maxfreq=10

enables visco-elastic modeling with three SLS mechanisms, tuned for the max frequency fmax =
10 Hz, such that the phase velocities are valid at the reference frequency fr = 2.5 Hz. For simplicity,
the lower frequency in the modeling is always two orders of magnitude smaller than the max
frequency,

fmin =
fmax

100
.

Instead of using maxfreq, the upper frequency limit can alternatively be specified through the
minppw option. In this case the material model is first evaluated to find minVS/h. The upper
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Figure 8.2: Relative phase velocity over the frequency band ω ∈ [1, 100]. Here, n = 3, and the
different colors correspond to different values of Q.

frequency limit is then calculated through the relation P = minVs/(hf), i.e.,

fmax =
1

Pmin
min

Vs

h
, Pmin = minppw.

The syntax for using minppw is given by

attenuation nmech=3 phasefreq=2.5 minppw=5

This procedure results in the same visco-elastic model as by replacing the minppw keyword by
maxfreq=fmax.

After the input file has been parsed, SW4 outputs basic information about the attenuation
modeling:

*** Attenuation parameters calculated for 3 mechanisms,

max freq=2.000000e+00 [Hz], min_freq=2.000000e-02 [Hz], \

velo_freq=1.000000e+00 [Hz]

Note that max_freq = ωmax/(2π), etc.
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Chapter 9

Output options

9.1 Setting the output directory

The fileio command is used to specify by which method and in which directory SW4 should write
its output files. If the specified directory does not exist, SW4 attempts to create it for you. The
fileio command may also be used to set the level of diagnostic messages (verbose) and how often
the time step information is printed. For example, the command

fileio path=sw4_dir verbose=1 printcycle=10

causes all output files to be written to the directory ”./sw4 dir”. The path may be absolute or
relative to the working directory. The verbose=1 option enables some extra diagnostic messages
to be printed to standard output. The default value is 0. A higher value gives more details, but
values exceeding 2 give a lot of information and are mostly intended for debugging purposes. The
printcycle=10 instructs SW4 to output time step information every 10 time steps, instead of the
default, which is every 1000 time steps.

Serial and Parallel file systems Some parallel machines have a dedicated parallel file system
that allows many processors to simultaneously write to the same file. These file systems are often
mounted under a particular sub-directory. By default, SW4 assumes that the file system is serial,
which means that only one processor is allowed to write to the same file at the same time. If you
have access to a parallel file system, the I/O performance of SW4 can sometimes be significantly
improved by allowing several processors to simultaneously write to the same file. You enable this
feature by using the pfs=1 option,

fileio pfs=1 nwriters=16 path=/p/lscratcha/my_output_directory

Note that the parallel file systems is often only accessible from certain directories. Setting pfs=1

without re-directing the output to such a directory may cause SW4 to either crash or hang. The
number of processes (cores) that write to disk can be changed with the nwriters option. By
default, nwriters=8. There is a trade-off when selecting nwriters. If nwriters is too small, SW4
will not make optimal use of the parallel file system, and some extra overhead is incurred by passing
parts of the data to the writing processors. If nwriters is too large, the I/O operation is chopped
up in too many small pieces, which will reduce the efficiency. To obtain good I/O performance, the
striping of the parallel file system needs be set appropriately. In our experience nwriters should

52



be at least as large as the stripe count. On the Lustre file system, used at Livermore Computing,
the lfs command can be used to set the striping. The striping is set on directories, not on files.
For example to set the stripe count to 30 on the directory /p/lscratchd/user/sw4runs, give the
command

lfs setstripe -s 8M -c 30 /p/lscratchd/user/sw4runs

This also sets the stripe size to 8 M byte. The stripe count, 30, will apply to all files that are
subsequently written to the directory. Increasing the stripe count from the default value (currently
2 at LC) to somewhere around 30–60 can make a big difference when writing large 3D data files,
such as produced by the volimage command. If only image slices and receiver data are output, the
stripe count is less significant.

9.2 Time-history at a receiver station: the rec (or sac) command

SW4 can save the time-history of the solution at a receiver station that is located anywhere in the
computational domain. The basic command looks like this:

rec x=100e3 y=50e3 z=0 file=sta1

For backwards compatibility with WPP, the rec command can also be called sac. The above
command makes SW4 save the three components of the solution at the grid point. The solution is
saved at the grid point which is the closest to the specified (x, y, z) location.

By default, SW4 saves the data using the binary Seismic Analysis Code (SAC) format, see [7].
Since each SAC file contains one component of the solution, the default rec command results in
three files:

sta1.x sta1.y sta1.z

The x,y,z files hold the corresponding solution component. Note that the orientation of the z-
component is positive downwards.

The location of the receiver station can alternatively be given in geographical (latitude, longi-
tude, depth) coordinates. Information about the event location, date, time, and station name is
saved in the header of the SAC file. The event location is taken as the hypocenter, i.e., the location
of the source with the earliest initiation time. The file name is used as the default station name,
but can be modified with the sta option. The date and time are by default set to be the starting
time of the simulation. That datum can be changed by using the utcstart option in the time

command,

time t=10 utcstart=01/04/2012:17:34:45.2343

rec lat=38.25 lon=-122.20 depth=0 file=sta1 sta=EKM

Note that the depth option specifies the depth of the receiver relative to the topography. To place
a receiver at elevation e relative to mean sea level (e is negative below sea level) you use the option
z=−e. Station that are placed above the topography will be ignored and do not generate any data.

By default, SAC files are written to disk every 1000 time steps, and at the end of the simulation.
We can change this frequency by using the writeEvery option. For example, to write the SAC file
every 100 time steps, you would say
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rec lat=38.25 lon=-122.20 depth=0 file=sta1 writeEvery=100

By default, SW4 outputs the three components of the solution u(xr, t) = (ux, uy, uz)
T at

each time step. Here, this quantity is called the displacement. However, it is important to note
that physical meaning of the solution depends on the source time function. For example, if the
displacement corresponds to a GaussianInt source time function, the solution would hold the
corresponding velocity if the time function was changed to a Gaussian.

The components that are saved by the rec command can be rotated to the East, North, and
vertical (positive up) directions by using the nsew option,

rec lat=38.25 lon=-122.20 depth=0 file=sta1 nsew=1

Here, the angle between North and the x-axis is determined by the azimuth (az=...) option in
the grid command:

grid x=100e3 y=50e3 z=30e3 lat=37.5 lon=-122.0 az=135

By default, the rec command outputs the three components of the solution (the displacement).
The rec command can also output the time derivative of the solution (the velocity),

rec lat=38.25 lon=-122.20 depth=0 file=sta1 variables=velocity nsew=1

As indicated here, the variables option can be combined with nsew. To remind the user of what
quantities are saved in a SAC file, we modify the file name extensions according to the following
table:

variables nsew=0 nsew=1

displacement .x, .y, .z .e, .n, .u

velocity .xv, .yv, .zv .ev, .nv, .uv

It is also possible to save the divergence, curl, or strain of the solution. The variables option
governs this behavior. For example,

rec lat=38.25 lon=-122.20 depth=0 file=sta1 variables=div

outputs a single file named sta1.div containing the divergence of the solution, which is independent
of the orientation of the components. Similarly,

rec lat=38.25 lon=-122.20 depth=0 file=sta1 variables=curl

outputs the Cartesian components of the curl in the files sta1.curlx, sta1.curly, and sta1.curlz.
Furthermore, SW4 can output the components of the symmetric strain tensor,

rec lat=38.25 lon=-122.20 depth=0 file=sta1 variables=strains

In this case, six files are generated: sta1.xx, sta1.yy, sta1.zz, sta1.xy, sta1.xz, and sta1.yz.
It is also possible to output the non-symmetric displacement gradient by,

rec lat=38.25 lon=-122.20 depth=0 file=sta1 variables=displacementgradient

which outputs nine components named sta1.duxdx to sta1.duzdz for the components ∂u(x)/∂x
to ∂u(z)/∂z.

For the curl, the strain, and the displacement gradient only nsew=0 has been implemented.
That is, we always output the Cartesian components of these quantities.
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9.2.1 The ASCII text format

SW4 can also output receiver time-histories on an ASCII text format,

rec lat=38.25 lon=-122.20 depth=0 file=sta1 sacformat=0 usgsformat=1

The ASCII text file holds all components (usually three, but only one when variables=div, and
six when variables=strains ) in a single file named sta1.txt. When the usgsformat=1 option
is used, the file gets extension .txt independently of the nsew and variables options. Instead, the
header of the file is modified to reflect its content. Note that you need to give the sacformat=0

option unless you want the solution to be output in both formats.

9.2.2 The SAC HDF5 format

SW4 can also output receiver time-histories in the HDF5 format,

rec lat=38.25 lon=-122.20 depth=0 file=sta1 hdf5file=sta.hdf5 sacformat=0 hdf5format=1

The HDF5 file holds all components (usually three, but only one when variables=div, and
six when variables=strains ) in a single file named sta.hdf5. When the hdf5format=1 and
hdf5file=sta.hdf5 option is used. Note that you need to give the sacformat=0 option unless you
want the solution to be output in both formats.

9.2.3 Notes on the rec command

• The files are treated in the same way on parallel and serial file systems, because the data
for each recording station originates from one processor (core) and is always written by that
processor only.

• The binary SAC format is described in Section 12.8.

• The ASCII text format is very simple and is outlined in its header.

• The HDF5 format is described in Section 12.9.

• The binary SAC files can be read by the SAC program. We also provide a matlab/octave
script in tools/readsac.m.

• The ASCII text file format can be read by the Matlab/Octave script in tools/readusgs.m.

9.3 2-D cross-sectional data: the image command

The image command saves two-dimensional horizontal or vertical cross-sectional data at a specified
time level. It can be used for visualizing the solution, making the images for a movie, or checking
material properties. Each image file contains a scalar field as function of the spatial coordinates
in the cross-sectional plane. The scalar field can be either a component of the solution, a derived
quantity of the solution, a material property, or a grid coordinate, All in all, SW4 can output twenty-
nine different image quantities, plus six additional image types for testing. See Section 11.5.3 for
details.
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The cross-sectional plane is specified by a Cartesian coordinate (x, y, or z). The image can be
written at a specific time step or at a specified time. Images can also be output at a fixed frequency,
either specified by a time step interval or a time interval.

For example, the command

image mode=ux y=500 file=picturefile cycle=1

tells SW4 to output the x-component of the displacement (the solution) along the vertical y = 500
plane. The data is written to a file named picturefile.cycle=1.y=500.ux.sw4img after the first
time step (cycle=1). The example

image mode=div x=1000 file=picturefile cycleInterval=100

outputs the divergence of the solution field in the yz-plane at the grid surface closest to x = 1000.
The data is written to the files

picturefile.cycle=100.x=1000.div.sw4img

picturefile.cycle=200.x=1000.div.sw4img

...

With this setup, one image file is output every 100 time steps.
Note that the divergence of the solution field does not contain shear (S) waves and the rotation

(curl) of the solution field does not contain compressional (P) waves. These options can therefore
be used to distinguish between P- and S-waves in the solution.

The hvelmax and vvelmax modes store the maximum in time of the horizontal and vertical
velocity components, respectively. As these names indicate, it is assumed that the sources in SW4
are set up for calculating displacements. The horizontal velocity is defined as max(|uNt |, |uEt |),
where uN and uE are the displacement components in the North and East directions, respectively.
The vertical velocity is |wt|, where w is the displacement component in the z-direction. For these
modes, the cycleInterval or timeInterval options only determine how often the maxima are written
to disk; the actual accumulation of the maximuma is performed after each time step.

When SW4 is run in parallel, the data that gets saved on an image file originates from all
processors that are intersected by the image plane. For horizontal image planes, this means all
processors. To improve the I/O performance, image data is first communicated to a number of
dedicated image writing processors. By default, 8 processors write each image file to disk (or all
processors if SW4 is run on fewer than 8). This number can be changed using the fileio command,

fileio nwriters=4

The above command tells SW4 to use 4 processors to write each image file. For simulations that
use very large number of grid points and many processors, care must be taken to make sure that
enough memory is available to buffer the image data before it is written to disk.

Notes on the image command:

• By default, single precision data is saved. Double precision data can be saved by using the
precision=double option.

• When topography is used, an image plane along the free surface is specified by the z=0 option.
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• A mode=topo z=0 image holds the elevation (negative z-coordinate) of the raw topography.
It can only be written when topography is used.

• A mode=grid z=0 image holds the z-coordinate (negative elevation) of the grid along the free
surface, which is the actual shape of the upper surface of the computational domain.

• When topography is used, vertical image planes intersect both component grids in the com-
posite grid. In this case, cross-sectional data from both component grids are stored on the
image file.

• When attenuation is enabled, the P- and S-phase velocities depend on frequency. The values
saved on image files correspond to the zero frequency limit.

• The images files are written in a binary format, see Section 12.10 for details.

• We provide matlab/octave scripts for reading image files in the tools directory. The basic
function is called readimage.m.

9.4 Checkpoint and Restart the checkpoint command

SW4 can write out checkpoint files with a fixed time step interval. The checkpoint file can be used
for restarting a simulation from when the latest checkpoint is written. SW4 writes out one single
file for each checkpoint, and user can choose to use either a binary format or the HDF5 format.
Checkpoint files can be very large, as it contains data of the entire domain. For the HDF5 format,
compression is also supported (with the same parameter as the ssioutput command), users are
advised to set a relatively low tolerance with the lossy compression to prevent significant precision
loss with the restart. And user should also be aware that a restart from a checkpoint file that uses
lossy compression will likely result in different solution results.

Below is an example command to write a checkpoint file every 80,000 steps to the output

directory. The checkpoint file name will be starting with HFCheck and includes the time step value
when it is written (e.g. HFCheck.cycle=160000.sw4checkpoint).

checkpoint cycleInterval=80000 restartpath=output file=HFCheck

To use the HDF5 format and optionally with compression:

checkpoint cycleInterval=80000 restartpath=output file=HFCheck \

hdf5=yes zfp_accuracy=1e-5

To restart from a previously written checkpoint file, add the restartfile key word and the
checkpoint file name to the checkpoint command:

checkpoint cycleInterval=80000 restartpath=output file=HFCheck \

restartfile=HFCheck.cycle=160000.sw4checkpoint \

hdf5=yes zfp_accuracy=1e-5

Note that when using the checkpoint command in combination with the rec, rechdf5, and
ssioutput commands, it is advisable to align their write intervals, such that the latest time-
series data are also written at the time writing a checkpoint file. For example, a user may set
writeEvery=1000 (default) in the rechdf5 command, and set dumpInterval=400 in the ssioutput
command, and set cycleInterval=40000, as 40000 is divisible by both 1000 and 4000.

More details are provided in Section 11.5.9
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Figure 9.1: Location of the source and stations for the Barnwell simulation. This figure was
generated using the GMT command, see Section 11.5.7 for details.

9.5 Creating a GMT script with the gmt command

The Generic Mapping Toolkit (GMT ) [21] is a suite of image generation programs for geophysical
applications. These programs can be used to make postscript plots like Figure 9.1. In the example
shown here, topography information is included as well as information on the general setup of the
simulation. Note that the gmt command in SW4 causes an ASCII text file to be generated. This file
contains a UNIX C-shell script with commands for the gmt programs, holding general information
about the run such as geometric coordinates of the computational domain as well as locations of
sources and receivers. There are many options for these programs, and they might need to be
fine-tuned to suit the needs of a particular application, see the GMT documentation for details.

To have SW4 generate a GMT shell script file, you give the command

gmt file=bolinas.gmt
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Chapter 10

Examples

In addition to the layer over half-space problems discussed here, there are additional, more realistic,
examples in the sw4/examples directory. Those cases illustrate the set up of heterogeneous material
models and also visco-elastic attenuation.

10.1 The elastic layer over half-space problem: LOH.1

The LOH.1 problem, defined in the input script examples/scec/LOH.1-h50.in, has a layered
material model where the top 1000 meters (z ∈ [0, 1000]) has different properties than the rest of
the domain. The computational domain is taken to be (x, y, z) ∈ [0, 30000]2 × [0, 17000]. The grid
size is choosen to be h = 50m and the material properties in the different layers are described by

grid h=50 x=30000 y=30000 z=17000

block vp=4000 vs=2000 rho=2600

block vp=6000 vs=3464 rho=2700 z1=1000

block vp=4630.76 vs=2437.56 rho=2650 z1=999 z2=1001

The last block command defines the properties right at the interface, using a harmonic average
for the Lamé parameters (µ, λ), and a artithmetic average for denisty. The problem is driven by a
single point moment source, positioned in the lower half-space. The time function in this problem
is a Gaussian (if setup as in the input file, the Gaussian source is equivalent to using a Brune time
function followed by a post processing deconvolution step, as is described in [4]). The advantage
of using the Gaussian is that no post processing is necessary, and the Gaussian function produces
less high wave number waves, which are poorly resolved on the computational mesh. Note that
freq=16.6667 corresponds to the spread σ = 0.06 (freq = 1/σ) in the Gaussian time function.
The command lines to setup the source and the time duration of the simulation are:

time t=9

source x=15000 y=15000 z=2000 mxy=1e18 t0=0.36 freq=16.6667 \

type=Gaussian

We use the fileio command to save all output files in the sub-directory LOH1-h50. If this
directory does not exist, SW4 will attempt to create it for you.

fileio path=LOH1-h50
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The magnitude of the solution along the free surface (z = 0) is saved on an image file every 0.5
seconds

image mode=mag z=0 file=surf timeInterval=0.5

In addition, the solution is recorded along a line of receivers on the free surface:

rec x=15600 y=15800 z=0 file=sta01 usgsformat=1

rec x=16200 y=16600 z=0 file=sta02 usgsformat=1

rec x=16800 y=17400 z=0 file=sta03 usgsformat=1

rec x=17400 y=18200 z=0 file=sta04 usgsformat=1

rec x=18000 y=19000 z=0 file=sta05 usgsformat=1

rec x=18600 y=19800 z=0 file=sta06 usgsformat=1

rec x=19200 y=20600 z=0 file=sta07 usgsformat=1

rec x=19800 y=21400 z=0 file=sta08 usgsformat=1

rec x=20400 y=22200 z=0 file=sta09 usgsformat=1

rec x=21000 y=23000 z=0 file=sta10 usgsformat=1

The velocity time histories for station 10 are shown in Figure 10.1 together with a semi-analytical
solution. In Matlab or octave, the semi-analytical solution can be generated by the scipt in
tools/loh1exact.m. The syntax is

octave:4> [t ra tr ve]=loh1exact(0.06);

As is customary in seismology, the velocity components have been rotated to polar components, with
the origin at the source. The vertical component (ve) is positive downwards. The rec command
outputs the ux, uy and uz-components of the velocity. These components are rotated to radial and
transverse components using the transformations,

urad = 0.6ux + 0.8uy, utran = −0.8ux + 0.6uy.

The vertical component is stored in uz (positive downwards). We conclude that most features in
the solution are very well captured on the grid with h = 50. The numerical solution becomes
almost identical with the semi-analytical solution when the grid is refined to h = 25 (experiment
not shown).

By using formulas (4.4)-(4.3), we can calculate the number of points per wave length for this
simulation. Since we are using a Gaussian time-function, the center frequency is f0 = 1/(2πσ) ≈
2.6526 and we estimate the highest significant frequency to be fmax ≈ 2.5f0 = 6.6315 Hz. The
material model has minVs = 2000 m/s. The grid has size h = 50 m, which results in

P =
2000

50 · 6.6315
≈ 6.03.

From our previous discussion (see Section 4.5), 6 points per wave length is on the low side, but
visual inspection of Figure 10.1 indicates very good agreement of the wave forms. The finer grid
with h = 25 gives P ≈ 12.1. For the purpose of most engineering calculations, we suggest using in
between P = 6 and P = 12 grid points per shortest wave length.
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Figure 10.1: LOH.1: The radial (top), transverse (middle) and vertical (bottom) velocities for
receiver number 10. Here the numerical solutions are plotted in red (h = 50) and the semi-
analytical solution is plotted in black.

10.2 The visco-elastic layer over half-space problem: LOH.3

The LOH.3 benchmark problem adds effects of anelastic attenuation to the LOH.1 problem. It
is defined in the input script examples/scec/LOH.3-h50.in. The input file is very similar to the
LOH.1 case. The visco-elastic modeling is enabled by the attenuation command,

attenuation phasefreq=2.5 nmech=3 maxfreq=15

In this case, three standard linear solid mechanisms are used (nmech=3) to give a material with
approximately constant quality factors in the frequency band 0.15 ≤ f ≤ 15 Hz. Note that
only the upper frequency limit needs to be specified (maxfreq=15); the lower limit is always 100
times smaller (and can not be specified). Since the visco-elastic material is dispersive, we use the
phasefreq=2.5 option to specify at what frequency the compressional and shear speeds should
apply. In the description of the LOH.3 problem this frequency is given as 2.5 Hz, see Day et al. [5].

Apart from the density and the material velocities, the material model must include the quality
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factors for the attenuation of compressional (QP ) and shear waves (QS). For this problem, we use
the block commands

block vs=3464 vp=6000 rho=2700 Qs=69.3 Qp=155.9

block vs=2000 vp=4000 rho=2600 z2=1000 Qs=40 Qp=120

block vs=2437.6 vp=4630.8 rho=2650 Qs=54.65 Qp=137.95 z1=999 z2=1001

Similar to the LOH.1 test case, the source is of point moment-tensor type with a Gaussian
time-function. However, note that the Gaussian has spread σ = 0.05 for LOH.3. This corresponds
to center angular frequency freq= 1/σ = 20 rad/s and center frequency f0 = 20/(2π) ≈ 3.18 Hz.
The source is specified by the command

source x=15000 y=15000 z=2000 mxy=1e18 t0=0.3 freq=20 \

type=Gaussian

Again, artifacts from a sudden startup are avoided by taking the center time to be t0= 6σ = 0.3.
The solution is recorded in the same array of receivers as before. In this case the semi-analytical
solution can be created by the Matlab/Octave script tools/loh3exact.m. The syntax is

octave:15> [t ra tr ve]=loh3exact(0.05);

As for the LOH.1 problem, the semi-analytical solution is given in polar components. The solution
from SW4 is saved in Cartesian coordinates and the numerical solution at station 10 can be read
into Octave using the command,

octave:23> [t1 ux uy uz]=readusgs("sta10.txt");

The components are rotated to polar components using the Octave commands,

octave:25> ur = 0.6*ux + 0.8*uy;

octave:26> ut = -0.8*ux + 0.6*uy;

We can compare the radial component of the semi-analytical and numerical solutions by giving the
commands

octave:33> plot(t,ra,"k",t1,ur,"r");axis([0 9 -1.5 1.5])

All three components of the solution at station 10 are shown in Figure 10.2. Note that the wave
forms are very similar to LOH.1, but the amplitudes are slightly smaller. As for LOH.1, we can
estimate the resolution in terms of the number of grid points per shortest significant wave length.
In this case the center frequency is f0 ≈ 3.18 Hz and we estimate the upper power frequency to be
fmax ≈ 2.5f0 = 7.95 Hz. The material model has minVs = 2000 m/s where the grid size is h = 50
m, and we arrive at

P =
2000

50 · 7.95
≈ 5.03.

From our previous discussion (see Section 4.5), 5 points per wave length can only be expected to
give marginal accuracy, but visual inspection of Figure 10.2 still indicates rather good agreement
of the wave forms. Note that the visco-elastic dissipation damps out higher frequencies faster than
lower frequencies. Station 10 is 10 km away from the source, and the domainant wave length is
approximately 2000/3.18 ≈ 628.9 meters. Hence, by the time the solution reaches station 10, it has
propagated about 16 wave lengths. The higher frequency components of the solution are therefore
less prominent compared to the purely elastic LOH.1 problem. This can also be seen by comparing
the amplitudes in Figures 10.2 and 10.1.
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Figure 10.2: LOH.3: The radial (top), transverse (middle) and vertical (bottom) velocities at
receiver number 10. Here the numerical solution with grid size h = 50 is plotted in red and the
semi-analytical solution is plotted in black.
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Chapter 11

Keywords in the input file

The syntax of the input file is

command1 parameter1=value1 parameter2=value2 ... parameterN=valueN

# comments are disregarded

command2 parameter1=value1 parameter2=value2 ... parameterM=valueM

...

Each command starts at the beginning of the line and ends at the end of the same line. Blank and
comment lines are disregarded. A comment is a line starting with a # character. The order of the
parameters within each command makes no difference. The material commands (block, ifile, pfile,
rfile, sfile, and gmg) are applied in the order they appear. The ordering of all other commands is
inconsequential. Note that the entire input file is read before the simulation starts.

Parameter values are either integers (-2,0,5,...), real numbers (20.5, -0.05, 3.4e4), or strings
(earthquake, my-favorite-simulation). Note that there must be no spaces around the = signs and
strings are given without quotation marks and must not contain spaces. Depending on the specific
command, some parameter values are required to fall within specified ranges.

A brief description of all commands is given in the following sections. The commands marked
as [required] must be present in all SW4 input files, while those marked as [optional] are just that.
Other commands, such as those specifying the material model can be given by a combination of
different commands (block, pfile, rfile, sfile, or ifile). Note that some required commands must occur
exactly once (grid, time). Some optional commands should not occur more than once (topography,
fileio, prefilter, globalmaterial, gmt, developer). Any number of output commands can be given (rec,
image, volimage). Unless SW4 is run in one of its test modes (twilight, testlamb, testpointsource,
testrayleigh, testenergy), at least one source must be specified, and the material must be specifed
by at least one of the (block, pfile, ifile, rfile, sfile, gmg) commands. Also note that the test modes
are mutually exclusive. Not all of these rules are currently enforced by the parser, but SW4 can
give unexpected behavior if they are violated.

Note that the same command parser is used for SW4 and its companion code SW4opt, which
calculates source parameters from seismic observations. Here we only document the commands and
options that are relevant for SW4.
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11.1 Basic commands

11.1.1 fileio [optional]

The fileio command is used for specifying output directories, setting the amount of information
output by SW4, the output frequency during the time-stepping, as well as enabling fast I/O for
parallel file system. See § 9.1 for more information.

Syntax:
fileio path=... verbose=... printcycle=... pfs=... nwriters=...

Required parameters:
None

fileio command parameters

Option Description Type Default

path path to a directory where all output will be writ-
ten

string .

verbose sets the level of diagnostic messages written to
standard out (≥ 0)

int 0

printcycle sets the interval for printing the cycle, time, dt
info

int 100

pfs assume a parallel (1) or serial (0) file system
when writing files (several processes can simul-
taneously write the same file on a parallel file
system)

int 0

nwriters set the number of processes that write an image
or volimage file

int 8

11.1.2 grid [required]

Syntax:
grid nx=... ny=... nz=... x=... y=... z=... h=... lat=... lon=... az=...

mlat=... mlon=... proj=... ellps=... datum=... scale=... lat p=...

lon p=...

Required parameters:
See below.

The grid command specifies the extent of the computational domain and the grid size in the base
grid. Optionally the grid command also specifies the latitude and longitude of the origin and the
azimuth angle between North and the x-axis. A number of different projections can be specified.

There are three basic ways of specifying the extent of the computational domain and the grid
size:

• number of grid points in all three directions and the grid size: nx=... ny=... nz=... h=...

• lenghts in all three directions and the grid size: x=... y=... z=... h=...
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• lenghts in all three directions and the number of grid points in one direction (the x-direction
in this example): x=... y=... z=... nx=...

It is not allowed to over-specify the grid size. For example, if x=... is given, you can not specify
both h=... and nx=.... Similarly, it is not allowed to over-specify the extent of the computational
domain. For example, when h=... is given, you can not prescribe both y=... and ny=....

grid command parameters (part 1)

Option Description Type Units Default

x physical dimension of grid in the x-direction real m none

y physical dimension of grid in the y-direction real m none

z physical dimension of grid in the z-direction real m none

h grid spacing real m none

nx number of grid points in the x-direction int none none

ny number of grid points in the y-direction int none none

nz number of grid points in the z-direction int none none

The default projection is spheriodal as described by equations (3.6)-(3.7). You can change the
parameter M with the mlat keyword. By using the mlon keyword, you modify the projection by
replacing M cos(ϕπ/180) in (3.7) by the constant Mlon.

More accurate projections are available through the Proj4 library (if SW4 was built with Proj4
support). These projections are enabled by using one of the keywords proj, ellps, datum, scale,
lat p, or lon p. The values assigned to these keywords are used to generate a string which is
passed directly to the pj init plus routine in the Proj4 library. For example, the grid command

grid x=12e3 y=12e3 z=5e3 nx=601 lat=37.93 lon=-122.25 az=143.6380 proj=tmerc \

datum=NAD83 lon_p=-123.0 lat_p=35.0 scale=0.9996

results in the string

pstr = "+units=m +proj=tmerc +datum=NAD83 +lon_0=-123.0 +lat_0=35.0 +scale=0.9996"

Note that the values of lat p and lon p are passed as arguments to lat 0 and lon 0, respectively.
See the Proj4 documentation for further guidance.
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grid command parameters (geographical coordinates and projection)

Option Description Type Units Default

az clockwise angle from North to the x-axis real degrees 135.0

lat latitude geographical coordinate of the origin real degrees 37.0

lon longitude geographical coordinate of the origin real degrees -118.0

mlat meters per degree of latitude (spheroidal projec-
tion)

real meters 111,319.5

mlon meters per degree of longitude (spheroidal pro-
jection)

real meters None

proj name of projection (see proj4 documentation) string None utm

ellps name of ellipse (see proj4 documentation) string None WGS84

datum datum of projection (e.g. NAD83) string None None

lon p central meridian of projection string degrees lon

lat p latitude of projection origin string degrees lat

scale scale factor for central meridian string None None

Note: The default projection, given by equations (3.6)-(3.7), is used if neither of the proj, ellps,
datum, scale, lat p, or lon p keywords are specified. The default value for lat_p and lon_p are
taken from the geographic coordinates of the grid origin (\lon and lat, respectively). The default
value for ellps is only used in the case that datum is not specified.

11.1.3 time [required]

Syntax:
time t=... steps=... utcstart=...

Required parameters:
t or steps

The time command specifies the duration of the simulation. You can either specify the final time
in seconds by using t, or specify the number of time-steps with steps. The size of the time step
is computed internally by SW4. You may not over specify the duration of the simulation, i.e., you
can not give both t=... and steps=....

The optional utcstart keyword is used to assign the Universal Time Coordinate (UTC)
corresponding to simulation time t = 0. The format of the UTC time is a string (with-
out quotation) “month/day/year:hour:minute:second.millisecond”. For example, the 17th hour,
34th minute, 12th second and 233th millisecond of January 31, year 2012, is encoded as utc-
start=01/31/2012:17:34:12.233. When the UTC time is set, all time-series (saved with the
rec command) are time stamped with that datum. The UTC time stamp is essential for correctly
aligning observed data when solving the inverse problem with SW4opt.

Note that the prefilter command does not modify the start time. This is a change from
WPP. See §11.1.5 for a discussion.
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time command parameters

Option Description Type Units Default

t duration of simulation real s none

steps number of cycles (time-steps) to advance int none none

utcstart month/day/year:hour:minute:second.millisecond string datum SW4 start time

11.1.4 supergrid [optional]

Syntax:
supergrid gp=... dc=... width=...

Required parameters:
None

Note that the keywords are different from WPP. Also note that increasing dc may lead to insta-
bilities.

supergrid command parameters

Option Description Type Units Default

gp Number of grid points in the supergrid layer int none 30

width Physical width of the supergrid layer float meters none

dc Damping coefficient in supergrid region real none 0.02

The parameters gp and width are mutually exclusive, setting both will lead to an error.

11.1.5 prefilter [optional]

Syntax:
prefilter fc1=... fc2=... type=... passes=... order=...

Required parameters:
None

The prefilter command is used to filter all source time functions before the simulation starts.
This approach gives the same result as filtering all time-series after the simulation is completed.
Hence, the prefilter command can be used to reduce the amount of post processing. The com-
mand is particularly useful in combination with the Dirac source time function, which triggers all
frequencies on the grid. The prefilter option is also useful for removing unphysical modes from
image files, e.g. max velocities or displacements. The prefilter command modifies the time func-
tions in all source commands using a discrete Butterworth filter. Lowpass and bandpass filters are
supported, with orders between 1 and 10. Only the fc2 frequency is used for lowpass filters, while it
is assumed that fc1<fc2 for bandpass filters. The filtering is either forwards in time (passes=1),
or forwards and backwards (passes=2). For passes=1, the filter is causual but gives the filtered
signal a phase shift. When passes=2 the filter has zero phase shift, but is acausual. In this case,
the filtered signal is only exponentially small as t → −∞. In order to avoid unphysical oscillations
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due to an abrupt start, an estimate of the length of this tail is calculated. A warning message is
printed to stdout if the time shift (t0) in the source is smaller than this value.

prefilter command parameters

Option Description Type Units Default

fc1 first (low) corner frequency in the filter (> 0) real Hz 0.1

fc2 second (high) corner frequency in the filter (> 0) real Hz 1.0

type lowpass or bandpass string None bandpass

passes number of passes (1 or 2) int None 2

order order of filter (1-10) int None 2

11.2 Sources [required]

11.2.1 source

Syntax:
source x=... y=... z=... lat=... lon=... depth=... topodepth=... m0=...

mxx=... mxy=... mxz=... myy=... myz=... mzz=... f0=... fx=... fy=...

fz=... rake=... strike=... dip=... t0=... freq=... type=... ncyc=...

dfile=...

Required parameters:
See below.

There can be multiple source commands in an input file. Each source command either sets up a
point force or a point moment tensor source and should follow the following rules:

• The location of the source must be specified by either Cartesian (x, y, z) or geographical
(lat, lon, depth or topodepth) coordinates. The depth below mean sealevel (z = 0) is
specified with z, while depth or topodepth specifies the depth below the topography.

• Select a point force or a point moment tensor source:

– Point force: give at least one component of the force vector (fx, fy, fz) and optionally
the amplitude f0.

– A point moment tensor source can be specified in one of two ways:

1. Seismic moment m0, and double couple focal mechanism, strike/dip/rake angles
(as defined in Aki and Richards [1]).

2. At least one component of the moment tensor (mxx, mxy, etc.) and optionally a
scaling factor m0.

• Specify a pre-defined source time function (with the type keyword), or give the file name for
a discrete time function (using the dfile keyword).

Note that all pre-defined time functions use the t0 keyword, and all functions except Dirac also
use the freq keyword. The only pre-defined time function that uses the ncyc keyword is Gaus-
sianWindow.
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source command parameters (part 1)

Option Description Type Units Default

x x position of the source (within domain) real m none

y y position of the source (within domain) real m none

z z position of the source (within domain) real m none

depth depth of the source (≥ 0) real m none

topodepth (same as depth) real m none

lat latitude geographical coordinate of the source real degrees none

lon longitude geographical coordinate of the source real degrees none

t0 offset in time (≥ 0) real s 0.0

freq frequency (> 0) (not used for Dirac) real Hz or rad/s 1.0

type Name of source time function string none RickerInt

ncyc Number of cycles (must be specified for the
GaussianWindow function)

int none 0

dfile File name for discrete time function string none none

The type keyword specifies the source time function. It can have the following values: GaussianInt,
Erf, Gaussian, RickerInt, Ricker, Ramp, Triangle, Sawtooth, Smoothwave, VerySmoothBump,

Brune, BruneSmoothed, GaussianWindow, Liu, Dirac, and C6SmoothBump. The functions are
described in § 4.2.

source command parameters (point moment tensor)

Option Description Type Units Default

m0 moment amplitude real Nm 1.0

mxx xx-component of the moment tensor real Nm 0.0

myy yy-component of the moment tensor real Nm 0.0

mzz zz-component of the moment tensor real Nm 0.0

mxy xy-component of the moment tensor real Nm 0.0

mxz xz-component of the moment tensor real Nm 0.0

myz yz-component of the moment tensor real Nm 0.0

strike strike angle (see Aki and Richards) real degrees none

dip dip angle real degrees none

rake rake angle real degrees none
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source command parameters (point force)

Option Description Type Units Default

f0 point force amplitude real N 1.0

fx forcing function in the x direction real N 0.0

fy forcing function in the y direction real N 0.0

fz forcing function in the z direction real N 0.0

11.2.2 rupture

Syntax:
rupture file=...

Required parameters:
name of SRF file.

The rupture command is used to describe complex time-dependent rupture mechanisms over a
fault surface. The rupture command reads a SRF (Standard Rupture Format) file and generates
a kinematic rupture model consisting of a set of moment tensor source terms. The local shear
modulus of the material is taken into account to calculate the strength of each source terms such
that the prescribed amount of slip is achieved on each sub-fault of the SRF file.

The SRF file format is described on the SCEC wiki webpage: http://scec.usc.edu/scecpedia/Standard_Rupture_Format
Note that when using a rupture file, the default SW4 time-series output is usually velocity

instead of displacement.

11.2.3 rupturehdf5

Syntax:
rupturehdf5 file=...

Required parameters:
name of SRF file in HDF5 format.

The rupturehdf5 command is similar to the rupture command, it reads a SRF-HDF5 file that is
converted from a SRF file using the python script found at sw4/tools/srf2hdf5.py.

The SRF-HDF5 file format is described in Section 12.7

11.3 The material model [required]

It is required that the material model is defined in the entire computational domain. The material
properies are extrapolated to the ghost points if they are not covered by the material model (this
is a change from WPP). The material commands block, ifile, rfile, sfile, gmg, and pfile,
are applied in the same order as they are given. Hence, it is possible to overwrite the properties
specified by a material command given earlier in the file. This can be particularily useful when
using the block command. Finally, the properties of the optional globalmaterial command are
enforced after all other material commands have been applied. Also note that the input file is
scanned for the attenuation command before any other commands are parsed. This command
may be located anywhere in the input file.
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11.3.1 attenuation [optional]

The attenuation command is used to enable visco-elastic modeling as described in Section 8.
The visco-elastic model is defined through the quality factors QP and QS . Similar to the elastic
properties, the quality factors may vary from point to point throughout the computational domain.
If visco-elastic modeling is enabled, the QP and QS factors must be specified as part of every
material command described below. When visco-elastic modeling is not enabled, the QP and QS

factors are not required in the material commands, and are ignored if present.

Syntax:
attenuation phasefreq=... nmech=... maxfreq=... minppw=... qmultiplier=...

Required parameters:
None
Note: you may not specify both maxfreq and minppw.

attenuation command parameters

Option Description Type Unit Default

phasefreq The frequency (> 0) at which CS and CP are
specified

real Hz 1.0

nmech Number of SLS mechanisms to approximate con-
stant QP and QS (between 0 and 8)

int None 3

maxfreq The upper frequency limit (> 0) for approximat-
ing constant QP and QS

real Hz 2.0

minppw Calculate the upper frequency limit based on
this number of grid points per shortest wave
length (> 0)

real None None

qmultiplier A number that will multiply both QP and QS real> 0 None 1.0

If you specify the minppw option, the upper frequency limit is calculated based on the relation
P = minCS/(hf), i.e.,

fmax =
1

Pmin
min

CS

h
, fmax = maxfreq, Pmin = minppw.

The qmultiplier value will multiply QP and QS at all grid points, before the computation starts,

QP := qmultiplier×QP QS := qmultiplier×QS .

This option gives the user an easy way to modify the quality factors, even if they are given on
material file formats that are hard to access manually. Use qmultiplier with caution. If the
quality factors are small (i.e., qmultiplier<< 1), the equations will become ill-posed. SW4 will
detect too small quality factors and terminate before the time stepping starts.

As a computationally inexpensive alternative to the visco-elastic modeling described in Sec-
tion 8, it is possible to set nmech=0. In this case, the attenuation modeling is performed without
memory variables. After each time step, the solution field at each grid point xi,j,k is simply multi-
plied by the factor

e−πfcδt/Q,
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where δt is the time step, fc is the center frequency, and Q = QS(xi,j,k). The center frequency is
specified by the maxfreq keyword. Note that the attenuation factor QP is not used in this case,
but it must still be specified.

11.3.2 block

Syntax:
block vp=... vs=... rho=... qp=... qs=... vpgrad=... vsgrad=...

rhograd=... absdepth=... x1=... x2=... y1=... y2=... z1=... z2=...

Required parameters:
vp, vs, rho (qp and qs with attenuation)

The block command specifies material properties that are constant or vary linearly with depth.
By default, the material properties apply to the entire computational domain. By using the op-
tional parameters x1=..., x2=..., etc., the material properties are only assigned in parts of the
computational domain. When used together with the topography command, the absdepth flag
determines how the z-coordinates are used. If absdepth=0 (default) z1=... and z2=... specify
depths below the free surface. If absdepth=1, z1=... and z2=... bound the z-coordinate of the
material block.

The gradient parameters vpgrad, vsgrad, and rhograd specify linear variations in the z-
direction (downward). The units for vpgrad and vsgrad are 1/seconds, which can be interpreted
as m/s per m, or km/s per km. The linear variation is relative to the properties at the free surface
(z = 0 or depth=0 with topography), e.g.,

Cp(z) = vp+ z vpgrad.

Note that when vpgrad is specified together with z1 = z1, Cp(z1) = vp+ z1 vpgrad. Hence, the
material properties at the top of the block (z = z1) can be very different from vp when z1 vpgrad
is large.

block command parameters (part 1)

Option Description Type Units Default

vp P-wave velocity real > 0 m/s none

vs S-wave velocity real > 0 m/s none

rho density real > 0 kg/m3 none

vpgrad vertical gradient for vp real m/s/m none

vsgrad vertical gradient for vs real m/s/m none

rhograd vertical gradient for rho real kg/m4 none

qp (or Qp) P-wave quality factor real > 0 none none

qs (or Qs) S-wave quality factor real > 0 none none
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block command parameters (part 2)

Option Description Type Units Default

x1 minimum x-dim for the box shaped sub-region real m -max x

x2 maximum x-dim for the box shaped sub-region real m 2 max x

y1 minimum y-dim for the box shaped sub-region real m -max y

y2 maximum y-dim for the box shaped sub-region real m 2 max y

z1 minimum z-dim for the box shaped sub-region real m -max z

z2 maximum z-dim for the box shaped sub-region real m 2 max z

absdepth z1 and z2 relative to topography (0), or absolute
z-coordinate (1)

int none 0

11.3.3 pfile

Syntax:
pfile filename=... directory=... smoothingsize=... vpmin=... vsmin=...

rhomin=... flatten=... style=...

Required parameters:
filename

pfile command parameters

Option Description Type Units Default

filename name of input pfile string none none

directory name of directory for the input pfile string none .

smoothingsize smooth data over stencil of this width (≥ 1) int none 5

vpmin minimum threshold value for Cp real m/s 0

vsmin minimum threshold value for Cs real m/s 0

rhomin minimum threshold value for density real m/s 0

flatten Flatten the earth model (T or F) string none F

style type of grid data: geographic or cartesian string none geographic

11.3.4 rfile

Syntax:
rfile filename=... directory=...

Required parameters:
filename
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rfile command parameters

Option Description Type Units Default

filename name of raster file string none none

directory name of directory for the raster file string none .

Note that only relative paths are currently supported in the filename keyword. Use the directory
keyword to specify absolute paths.

11.3.5 sfile

Syntax:
sfile filename=... directory=...

Required parameters:
filename

sfile command parameters

Option Description Type Units Default

filename name of raster file string none none

directory name of directory for the raster file string none .

Note that sfile uses HDF5 format, so SW4 must be compiled with HDF5. Also only relative paths
are currently supported in the filename keyword. Use the directory keyword to specify absolute
paths.

11.3.6 gmg

Syntax:
gmg filename=... directory=...

Required parameters:
filename

gmg command parameters

Option Description Type Units Default

filename name of GMG file string none none

directory name of directory for the GMG file string none .

Note that GMG uses HDF5 format, so SW4 must be compiled with HDF5. Also only relative paths
are currently supported in the filename keyword. Use the directory keyword to specify absolute
paths.

11.3.7 ifile

Syntax:
ifile filename=... input=...

Required parameters:
filename
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The ifile command specifies the depth of material surfaces as function of longitude and latitude,
and must be used in conjunction with the material command. The file format is described in
Section 12.4.

ifile command parameters

Option Description Type Default

filename name of input file holding material surfaces string None

input cartesian or geographic string None

If input=cartesian, the file is assumed to give the material surfaces as function of the x- and
y-coordinates. If input=geographic, they are functions of latitude and longitude. See Section 12.4
for details.

11.3.8 material

Syntax:
material id=... vp=... vs=... rho=... vpgrad=... vsgrad=... rhograd=...

vp2=... vs2=... rho2=... vpsqrt=... vssqrt=... rhosqrt=... qp=... qs=...

Required parameters:
id, vp, vs, rho

The material command is used to define material properties together with the ifile command, see
Section 12.4 for the file format.

material command parameters (constants)

Option Description Type Default

id material ID number > 0 int None

vp P-wave velocity real None

vs S-wave velocity real None

rho Density real None

qp or Qp P-wave quality factor None None

qs or Qs S-wave quality factor None None

material command parameters (gradients)

Option Description Type Default

vpgrad P-velocity gradient real 0.0

vsgrad S-velocity gradient real 0.0

rhograd Density gradient real 0.0

76



material command parameters (higher order)

Option Description Type Default

vp2 P-velocity quadratic coefficient real 0.0

vs2 S-velocity quadratic coefficient real 0.0

rho2 Density quadratic coefficient real 0.0

vpsqrt P-velocity
√
z coefficient real 0.0

vssqrt S-velocity
√
z coefficient real 0.0

rhosqrt Density
√
z coefficient real 0.0

11.3.9 globalmaterial [optional]

Syntax:
globalmaterial vpmin=... vsmin=...

Required parameters:
None

The globalmaterial command is used to put threshold values on the P - and S-velocities in the
material model. These thresholds are enforced after the material properties have been assigned to
all grid points.

globalmaterial command parameters

Option Description Type Default

vpmin Minimum P-wave velocity (> 0) real None

vsmin Minimum S-wave velocity (> 0) real None

11.3.10 randomblock [optional]

Syntax:
randomblock corrlen=... corrlenz=... sigma=... hurst=... zmin=... zmax=...

seed=...

Required parameters:
None

The randomblock command adds a random perturbation to the material velocities Cs and Cp. SW4
adds the random perturbation after the specified material model has been read. The randomblock
command will work together with any of the material commands described in this section. Cp and
Cs use the same random field, hence the ratio Cp/Cs is unaffected by the perturbation. The density
is not perturbed.

The random perturbation uses the von Karman self-similar correlation function, which has
energy spectrum proportional to

1

(1 + a2k2)H+3/2
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where a2k2 = a2hk
2
x+a2hk

2
y+a2vk

2
z , and H is the Hurst exponent. ah and av are normalized horizontal

and vertical correlation lenghts, respectively. The material velocities are updated by the random
block according to

Cs := Cs ∗ (1 + θ) Cp := Cp ∗ (1 + θ)

where θ is a generated random number, scaled to have mean zero and standard deviation σ.
The the limits zmin and zmax allow specification of different correlation lenghts and/or Hurst

exponents at different depths, by using more than one randomblock command. If no limits are
given, the random perturbation will be applied over the entire computational domain.

Unlike the old randomize command, the random numbers are not globally defined, i.e., two
runs using different number of processors will use different sequences of random numbers, even if
the random seeds are the same in the two runs.

Randomblock command parameters

Option Description Type Units Default

corrlen Horizontal correlation length real m 1000

corrlenz Vertical correlation length real m corrlen

sigma standard deviation of perturbation, σ real None 0.1

hurst Hurst exponent in correlation fcn. real None 0.3

zmin Minimum z-coordinate of random block real m min z of domain

zmax Maximum z-coordinate of random block real m max z of domain

seed Random number generator seed int None read from /dev/urandom

11.3.11 anisotropy [optional]

Syntax:
anisotropy

Required parameters:
None

The anisotropy command enables modeling of general anisotropic elastic materials described by
a 21 parameter stiffness matrix C. The 6 × 6 stiffness matrix is symmetric and must be positive
definite. Currently, the anisotropic model can not be used together with attenuation. Furthermore,
the material model can only be specified with the ablock command, see Section 11.3.12. Material
commands for the isotropic model will be ignored when the anisotropy command is used.

11.3.12 ablock [optional]

Syntax:
ablock x1=... x2=... y1=... y2=... z1=... z2=... rho=... rhograd=...

c11=... c12=... c13=... c14=... c15=... c16=...

c22=... c23=... c24=... c25=... c26=...

c33=... c34=... c35=... c36=...
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c44=... c45=... c46=...

c55=... c56=...

c66=...

cgrad11=... cgrad12=... cgrad13=... cgrad14=... cgrad15=... cgrad16=...

cgrad22=... cgrad23=... cgrad24=... cgrad25=... cgrad26=...

cgrad33=... cgrad34=... cgrad35=... cgrad36=...

cgrad44=... cgrad45=... cgrad46=...

cgrad55=... cgrad56=...

cgrad66=...

Required parameters:
rho, and a sufficient number of cij to make the C matrix positive definite.

The stiffness matrix defines the relation between stresses and strains using Voigt notation, see for
example Carcione [3] for details.

11.4 Topography command [optional]

11.4.1 topography [optional]

Syntax:
topography input=... file=... resolution=... zmax=... order=... smooth=...

gaussianAmp=... gaussianXc=... gaussianYc=... gaussianLx=... gaussianLy=...

Required parameters:
input, zmax, file (except when input=gaussian)

Also see discussion below.

The topography command specifies the shape of the free surface boundary, and optionally allows
the polynomical order of the grid mapping to be adjusted. The topography is given as elevation
(in meters) relative to mean sea level, i.e., positive above sea level and negative below sea level.
The curvilinear grid is located between the topography and z = zmax (recall that z is directed
downwards). If the elevation ’e’ of the topography ranges between emin ≤ e ≤ emax, we recommend
using zmax ≥ −emin + 2|emax − emin|.

There are five ways of specifying the topography:

• input=geographic Read the topography from a file, where the coordinates are given as as
function of geographic coordinates (latitude and longitude). The file name must be specified
by the file=... keyword. The format for this file is described in Section 12.2.

• input=cartesian Read the topography as function of Cartesian coordinates. The file name
must be specified by the file=... keyword. The format for this file is described in Section 12.2.

• input=rfile Read the topography from a binary raster file. The name of the raster file must
be specified by the file=... keyword. The format of this file is described in Section 12.5.

• input=gaussian Build an analytical topography in the shape of a Gaussian hill. The am-
plitude is specified by gaussianAmp=..., the hill is centered at gaussianXc=..., gaus-
sianYc=..., and the half width of the hill in the x and y-directions are specified by gaus-
sianLx=..., and gaussianLy=.... Note that this topography is not smoothed, i.e., the
smooth keyword is not used in this case.
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topography command parameters (basic)

Option Description Type Units Default

input Type of input: geographic (or grid), cartesian
or gaussian

string none none

file File name if input=geographic or in-
put=cartesian

string none none

zmax z coordinate of the interface between Cartesian
and curvilinear grid

real m 0

order Interpolation order (2-6) int none 4

smooth Number of smoothing iterations of topography
grid surface

int none 10

topography command parameters (Gaussian Hill)

Option Description Type Units Default

gaussianAmp Amplitude for a Gaussian hill topography real meters 0.05

gaussianXc x-coordinate of center for a Gaussian Hill real meters 0.5

gaussianYc y-coordinate of center for a Gaussian Hill real meters 0.5

gaussianLx Width of the Gaussian hill in the x-direction real meters 0.15

gaussianLy Width of the Gaussian hill in the y-direction real meters 0.15

11.4.2 refinement [optional]

Each refinement command corresponds to a mesh refinement patch for z ≤ zmax. The grid size
in each refinement patch is half of the next coarser grid size. The grid size in the coarsest grid is
prescribed by the grid command.

Syntax:
refinement zmax=...

Required parameters:
zmax

refinement command parameters

Option Description Type Unit Default

zmax maximum z-coordinate for the refinement region real m None

11.5 Output commands [optional]

The output commands enable results from the simulation to be saved on file. The rec command
saves a time series of the solution at a recording station, which can be read by the SAC program [7]
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or the readsac.m Matlab script in the tools directory. The image command is used to save a
two-dimensional cross-section of the solution, the material properties, or the grid. The image files
can be read by the readimage.m Matlab script in the tools directory. The volimage command is
used to save three-dimensional volumetric data of the solution, derived quantities of the solution,
or the material model. These files are written in a binary format. The readimage3d.m Matlab
script in the tools director can read the three-dimensional data into Matlab or Octave. The gmt
command outputs a shell script file containing the location of all rec stations and the epicenter,
i.e., the location of the source command with the earliest start time. This shell script file can be
used for further postprocessing by programs in the GMT suite [21].

11.5.1 rec (or sac) [optional]

The rec command is used to save the time history of the solution at a fixed location in space, see
§ 9.2 for examples. For backwards compatibility with WPP, this command can also be called sac.
However, some options of the sac command in WPP have changed names and others are no longer
supported.

Syntax:
rec x=... y=... z=... lat=... lon=... depth=... topodepth=... sta=...

file=... writeEvery=... nsew=... usgsformat=... sacformat=... hdf5format=...

variables=... hdf5file=... downsample=...

Required parameters:
Location of the receiver in Cartesian or geographical coordinates.

The file format is described in Section 12.8.

sac command parameters (part 1)

Option Description Type Units Default

x x position of the receiver real m 0.0

y y position of the receiver real m 0.0

z z position of the receiver real m 0.0

lat latitude geographical coordinate of the receiver real degrees none

lon longitude geographical coordinate of the receiver real degrees none

depth depth of the receiver (below topography) real m none

topodepth depth of the receiver (same as depth) real m none
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sac command parameters (part 2)

Option Description Type Units Default

file file name string none station

sta name of the station string none (same as file)

hdf5file file name string none station

writeEvery cycle interval to write the file to disk int none 1000

usgsformat output all components in an ASCII text file int none 0

sacformat output each component in a SAC file int none 1

hdf5format output all components in an HDF5 file int none 0

nsew output (x,y,z)-components (0) or East, North,
and vertical (−z) components (1)

int none 0

variables displacement, velocity, div, curl, strains, or dis-
placementgradient

string none displacement

downsample only available when hdf5format=1, outputs all
components with the given downsample rate, re-
sulting in less output data size

int none 1

Let u = (u(x), u(y), u(z)) denote the solution of (3.1) computed by SW4. The variables output
options have the following meaning. displacement gives the three components of the computed
solution, u. velocity gives the three components of the time derivative, ut. div gives a single
variable containing the divergence of u. curl gives the three components of the curl of u. strains

give the six strain components in order: u
(x)
x ,u

(y)
y ,u

(z)
z ,(u

(y)
x + u

(x)
y )/2, (u

(z)
x + u

(x)
z )/2, and (u

(y)
z +

u
(z)
y )/2. displacementgradient gives the nine components: u

(x)
x , u

(x)
y , u

(x)
z , u

(y)
x , u

(y)
y , u

(y)
z , u

(z)
x ,

u
(z)
y , and u

(z)
z .

The geographic coordinate option nsew=1 is only effective when variables is displacement,
velocity, or div.

11.5.2 rechdf5 (or sachdf5) [optional]

Similar to the rec command, the rechdf5 command is used to save the time history of the solution
at a fixed location in space in the HDF5 format, see § 9.2 for examples. The major difference is that
all station’s data is stored in a single file instead of multiple ones in either SAC or USGS format.

Syntax:
rechdf5 infile=... outfile=... writeEvery=... downsample=... variables=...

Required parameters:
Location of the receiver in Cartesian or geographical coordinates stored in HDF5 format.

The HDF5 file format is described in Section 12.9.
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sachdf5 command parameters

Option Description Type Units Default

infile input file name string none station.h5

outfile input file name string none station out.h5

writeEvery cycle interval to write the file to disk int none 1000

variables displacement, velocity, div, curl, strains, or dis-
placementgradient

string none displacement

downsample outputs all components with the given down-
sample rate, resulting in less output data size

int none 1

11.5.3 image [optional]

Syntax:
image x=... y=... z=... time=... timeInterval=... cycle=...

cycleInterval=... file=... mode=... precision=...

Required parameters:
Location of the image plane (x, y, or z)
Time for output (time, timeInterval, cycle, or cycleInterval)
Notes:
mode=topo can only be used when the topography command is used.
z=0 corresponds to the free surface when topography is used. It is not possible to output a plane
with z = const. that cuts through the curvilinear grid. When topography is used, any such
z-plane will be output on the free surface.
The error in the solution can only be calculated in testing mode, i.e., while using twilight,
testlamb, or testpointsource.

The image file format is described in Section 12.10.

image command parameters (part 1)

Option Description Type Units Default

x x location of image plane (≥ 0) real m none

y y location of image plane (≥ 0) real m none

z z location of image plane (≥ 0) real m none
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image command parameters (part 2)

Option Description Type Units Default

time Time-level for outputting image (closest time
step) (≥ 0)

real s none

timeInterval Time-level interval for outputting a series of im-
ages (> 0)

real s none

cycle Time-step cycle to output image (≥ 0) int none none

cycleInterval Time-step cycle interval to output a series of
images (≥ 1)

int none none

file File name header of image string none image

precision Floating point precision for saving data (float or
double)

string none float

mode The field to be saved string none rho

mode can take one of the following values:

mode options (grid, location & topography)

Value Description

lat latitude (in degrees)

lon longitude (in degrees)

topo elevation of topography [only available with topography ]

grid grid coordinates in the plane of visualization (e.g. y-z plane if x=const)

gridx grid x-coordinates in the plane of visualization

gridy grid y-coordinates in the plane of visualization

gridz grid z-coordinates in the plane of visualization

mode options (material)

Value Description

rho Density

lambda 1st Lamé parameter

mu 2nd Lamé parameter (shear modulus)

p Compressional wave speed

s Shear wave speed

qp QP quality factor

qs QS quality factor
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mode options (solution)

Value Description

ux displacement in the x-direction

uy displacement in the y-direction

uz displacement in the z-direction

div divergence of u (displacement)

curl magnitude of the rotation of u

mag magnitude of u

hmag magnitude of (u(x), u(y)) (horizontal components)

hmax maximum in time of magnitude of (u(x), u(y))

vmax maximum in time of |u(z)| (vertical component)

divdudt (veldiv) divergence of ut (velocity)

curldudt (velcurl) magnitude of the rotation of ut

magdudt (velmag) magnitude of the ut

hmagdudt (hvelmag) magnitude of (u
(x)
t , u

(y)
t )

hmaxdudt (hvelmax) maximum in time of magnitude of (u(x), u(y))

vmaxdudt (vvelmax) maximum in time of |u(z)t |

mode options (testing)

Value Description

uxexact x-component of exact solution

uyexact y-component of exact solution

uzexact z-component of exact solution

uxerr x-component of error (difference between computed and exact solution)

uyerr y-component of error (difference between computed and exact solution)

uzerr z-component of error (difference between computed and exact solution)

11.5.4 imagehdf5 [optional]

Syntax:
imagehdf5 x=... y=... z=... time=... timeInterval=... cycle=...

cycleInterval=... file=... mode=... precision=...

Required parameters:
Location of the image plane (x, y, or z)
Time for output (time, timeInterval, cycle, or cycleInterval)
Notes:
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imagehdf5 is identical to the image command, while writing the image data in an
HDF5 file. One can easily read and plot the data using python function provided in
the jupyter notebook at tools/plotimageh5.ipynb

11.5.5 volimage [optional]

Syntax:
volimage file=... mode=... precision=... time=... timeInterval=... cycle=...

cycleInterval=... startTime=...

Required parameter:
Time for output: (time, timeInterval, cycle, or cycleInterval).

The volimage command in SW4 allows you to save 3D volumetric data on file. These files can
be read by the Matlab/Octave script in tools/readimage3d.m. You may also want to use the
open source post processor VisIt, to read these files. Be aware that these files can be very large.
The output occurs at certain time levels during the simulation. The time levels are controlled by
the parameters time=..., timeInterval=..., cycle=..., or cycleInterval=..., which have the
same meaning as in the image command. In addition, the startTime=... option can be used in
conjunction with cycleInterval or timeInterval to only output data after a specified time level in
the simulation. The options file=..., mode=..., and precision=... have the same meaning as the
corresponding parameters in the image command. The set of possible modes, which is different from
the image command, is given in the table below. The volimage command produces files with ex-
tension .3D.mode.sw4img, where mode is one of ux, uy, uz, rho, lambda, mu, p, s, qp, qs.

When topography is present, i.e., the top grid is curvilinear, each file also includes the z-
coordinates of the curvilinear grid. Note that the grid coordinates are only saved when the input
file contains a topography command.

The file format is described in Section 12.12.

volimage command options

Option Description Type Units Default

file file name header of image string none volimage

mode specifies which field is written to the image file string none rho

precision precision of image data on file (float/double) string none float

time simulation time to output image, will be closest
depending on dt taken

real sec. none

timeInterval simulation time interval to output series of im-
ages

real sec. none

cycle time-step cycle to output image int none none

cycleInterval time-step cycle interval to output a series of im-
ages

int none none

startTime only output data after this time level (only used
with cycleInterval or timeInterval)

real s -999.9

The mode keyword can have the following values:
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volimage mode sub-options

Value Description

ux x-components of the solution (displacement)

uy y-components of the solution (displacement)

uz z-components of the solution (displacement)

rho density of material

p Cp material velocity

s Cs material velocity

lambda First Lamé parameter

mu Second Lamé parameter

qp Qp material attenuation factor

qs Qs material attenuation factor

11.5.6 ssioutput [optional]

Syntax:
ssioutput file=... dumpInterval=... bufferInterval=... xmin=... xmax=...

ymin=... ymax=... depth=... compression option=...

Required parameter:
file, xmin, xmax, ymin, ymax, depth.

The ssioutput command in SW4 allows you to save 3D volumetric data in a file for ESSI. These
files are in an HDF5 format that can be post-processed for ESSI input directly. SW4 must be com-
piled with the hdf5=yes option to enable this option, and tests are available in the examples/essi
directory.

Be aware that these files can be very large, depending on the x,y,z ranges (which could include
the whole domain). The option file=... has the same meaning as the corresponding parameters
in the image command. The ssioutput command produces files with extension .ssi. To reduce
the output size, we have enabled the support to utilize ZFP https://github.com/LLNL/zfp and
SZ https://github.com/szcompressor/SZ lossy compression. They can reduce the output size
without significant precision loss. We found setting zfp_accuracy=0.01 can reduce the output
size by a factor of 40. Note ZFP and H5Z-ZFP must be installed and linked with SW4 to use this
option, see the Installation Guide for detailed installation instructions.

The option dumpInterval=... affects the maximum number of time steps in a file, it allows
down-sampling the data to reduce the overall output size. If omitted, the data is written after
every time step of the simulation.

Note that when the checkpoint command is being used, it is best to have cycleInterval
divisible by dumpInterval. This is to guarantee that both the checkpoint and SSI files are written
after the same time step.

Note that only data from the topmost grid can be output, which may or may not include
topography and in the case of mesh refinement, will not span the whole vertical domain. The
depth=... option will use the horizontal grid spacing to estimate a fixed number of grid points to
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output in the k -direction. When topography is present, i.e., the top grid is curvilinear, each file
also includes the z-coordinates of the requested points in the curvilinear grid. Note that the grid
coordinates are only saved when the input file contains a topography command.

To imporve the I/O performance, bufferInterval should be set. We found setting it 400 to
800 are good in large scale simulations.

The file format is described in Section 12.13.

ssioutput command options

Option Description Type Units Default

file file name header of image string none ssioutput

dumpInterval interval between file writes string none -1

xmin starting x location of requested SSI region real m 0

xmax ending x location of requested SSI region real m xmax

ymin starting y location of requested SSI region real m 0

ymax ending y location of requested SSI region real m ymax

depth approx depth of output over requested SSI re-
gion

real m 0

zfp accuracy use ZFP lossy compression accuracy mode float none N/A

zfp precision use ZFP lossy compression precision mode float none N/A

zfp rate use ZFP lossy compression rate mode float none N/A

zfp reversible use ZFP lossless compression mode int none 0

11.5.7 gmt [optional]

Syntax:
gmt file=...

Required parameters:
None.

gmt command parameters

Option Description Type Default

file name of output file for gmt c-shell commands string sw4.gmt.csh

11.5.8 sfileoutput

Syntax:
sfileoutput file=... sampleFactor=... sampleFactorH=... sampleFactorV=...

Required parameter:
File name prefix: (file).
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The sfileoutput command in SW4 allows you to save 3D volumetric material data on a HDF5
file (sfile). These files can be read by the python/Jupyter script in tools/plot_sfile.ipynb.
Be aware that these files can be very large if sampleFactor is not set properly. The output
is written out at the end of SW4 run. The sampleFactor=... option sets the sub-sampling
factor to the output, a sampleFactor=n will result in approximately 1/n3 of the file size from
sampleFactor=1. Users can also set different sample factor in horizontal (sampleFactorH) and
vertical directions (sampleFactorV). As the material data is often very sensitive on the vertical
direction, it is advisable to set sampleFactorV to 1 and sampleFactorH to 2 or a larger value. The
sfileoutput command produces files with extension .sfile.

The file format is described in Section 12.6.

sfileoutput command options

Option Description Type Units Default

file file name of sfile string none ”sfileoutput”

sampleFactor specifies the sub-sampling factor for both hori-
zontal and vertical directions

int none 1

sampleFactorH specifies the sub-sampling factor in the horizon-
tal direction

int none 1

sampleFactorV specifies the sub-sampling factor in the vertical
direction

int none 1

11.5.9 checkpoint [optional]

Syntax:
checkpoint cycleInterval=... file=... restartpath=...

zfp accuracy/precision/rate/reversible=...

checkpoint cycleInterval=... file=... restartpath=... restartfile=...

zfp accuracy/precision/rate/reversible=...

Required parameter:
Time for output: (time, timeInterval, cycle, or cycleInterval).
Notes:
restartpath. argument sets the path for the checkpoint (write) and restart files

The checkpoint command in SW4 allows you to save and restore the simulation using restart files.
These files can be created using the input:

checkpoint cycleInterval=50 restartpath=loh1-results-restart file=LOH1_restart

The command above will create a checkpoint file in restartpath:

loh1-results-restart/LOH1_restart.cycle=050.sw4checkpoint

where the file name format is [path]/[prefix].cycle=[XXX].sw4checkpoint, and the format of
the cycle number depends on the total number of time steps in the simulation. The checkpoint
functions keep only the last 2 checkpoint files, and deletes all prior files. To assure continuity of the
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time series data for the rec command, checkpoint forces those files to be written whenever the
checkpoint file is written. These are written to the directory specified by the fileio path variable.

The simulation can be restarted with the input line:

checkpoint cycleInterval=5 restartfile=LOH1_restart.cycle=050.sw4checkpoint

restartpath=loh1-results-restart file=LOH1_restart

On restart, the simulation will read in the state, and attempt to read in all the rec USGS and
SAC files specified in the input from the fileio path directory. It will abort if it cannot find the
checkpoint or rec files to read from the restart path. The rec USGS and SAC files are read in, and
continued from the checkpoint cycle, and overwritten in the output directory fileio path. Note:
Because SAC files are float (4 byte) instead of double (8 byte), there may be differences in the last
(7th or higher) digits after restart.

restart parameters

Option Description Type Default

file file header name to be prepended on restart files. string “ ”

cycleInterval sets the interval for writing out restart files int 0

restartfile restart the code from this file string “restart”

restartpath path to restart file string N/A

hdf5 use HDF5 output format string “no”

zfp accuracy use ZFP lossy compression accuracy mode float N/A

zfp precision use ZFP lossy compression precision mode float N/A

zfp rate use ZFP lossy compression rate mode float N/A

zfp reversible use ZFP lossless compression mode int 0

11.6 SW4 testing commands [optional]

11.6.1 twilight

The twilight command runs SW4 in a testing mode where forcing functions are constructed to
create a known smooth analytical solution, see Appendix A.1 for details.

Syntax:
twilight errorlog=... omega=... c=... phase=... momega=... mphase=...

amprho=... ampmu=... amplambda=...

Required parameters:
None
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twilight command parameters

Option Description Type Default

errorlog Outputs error log in file twilight errors.dat int 0

omega Wave number in exact solution real 1.0

c Phase speed in exact solution real 1.3

phase Solution phase coefficient real 0.0

momega Wave number in material real 1.0

mphase Material phase coefficient real 0.4

amprho Density amplitude real 1.0

ampmu Material µ amplitude real 1.0

amplambda Material λ amplitude real 1.0

11.6.2 testlamb

The testlamb command solves Lamb’s problem, i.e., the displacement due to a vertical point
forcing on a flat free surface, see Appendix A.2 for details.

Syntax:
testlamb x=... y=... cp=... rho=... fz=...

Required parameters:
Location of the forcing (x, y).

testlamb command parameters

Option Description Type Default

x x-coordinate of point source real 0.0

y y-coordinate of point source real 0.0

cp P-wave velocity real 1.0

rho Density real 1.0

fz Magnitude of the forcing real 1.0

11.6.3 testpointsource

The testpointsource command calculates the displacement due to a point source in a homogeneous
whole space, and computes the error. The source properties are specified by a regular source

command. However, there must be exactly one source command and, the time function must be
one of the types VerySmoothBump, C6SmoothBump, SmoothWave, or Gaussian.

Before the solution has reached the a boundary or the super-grid layers, this test evaluates the
discretization of the source term. If supergrid layers are used on all six boundaries, this test can
also be used to evaluate the accuracy of the supergrid far field layers.

By setting diractest=1, SW4 checks the moment conditions of the source discretization. See
the source code for further details.
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Syntax:
testpointsource cp=... cs=... rho=... diractest=...

Required parameters:
None

testpointsource command parameters

Option Description Type Default

cp P-wave velocity real
√
3

cs S-wave velocity real 1

rho Density real 1

diractest Test moment conditions (0 or 1) int 0

11.6.4 testrayleigh

The testrayleigh command runs a surface wave through the domain with periodic boundary
conditions in the horizontal plane. The file RayleighErr.txt with information about the error in
the computation after each time step is produced. The file has four columns where the first
column is the time, the second column is the maximum norm of the error, the third column is the
L2 norm of the error, and the fourth column is the maximum norm of the solution.
Syntax:
testrayleigh cp=... cs=... rho=... nwl=...

Required parameters:
None

testrayleigh command parameters

Option Description Type Default

cp P-wave velocity real
√
3

cs S-wave velocity real 1

rho Density real 1

nwl number of wave lengths in domain int 1

11.6.5 testenergy

The numerical scheme used by SW4 can be proven to be energy conserving, see [20]. The
testenergy command verifies the implementation of the scheme by checking the energy
conservation. Testenergy sets the material speeds, CP , CS , and the density to be completely
random (but positive). The initial data is also set to a random field. By default the boundary
conditions are periodic in the x- and y-directions, with free-surface conditions at z = 0 and
homogeneous Dirichlet conditions at z = zmax. The boundary conditions can be changed by the
keyword described in Section 11.7.1. The file energy.log is produced, containing the energy after
each time step.
Syntax:
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testenergy cpcsratio=... seed=... writeEvery=... filename=...

Required parameters:
None

testenergy command parameters

Option Description Type Default

cpcsratio P-wave velocity to S-wave velocity ratio real
√
3

seed Pseudo-random number generator seed int 2934839

writeEvery frequency for saving log file to disk int 1000

filename name of log file string energy.log

11.7 Advanced simulation controls [optional]

WARNING! The commands in this section are only intended for advanced users who are intimately
familiar with the inner workings of SW4. These commands might lead to unexpected side effects.
Only the source code gives a complete description of what these commands really do.

11.7.1 boundary conditions [optional]

Syntax:
boundary conditions lx=... hx=... ly=... hy=... lz=... hz=...

Required parameters:
None

Note that the boundary condition values are different in SW4 and WPP. The stress-free boundary
condition can only be used on the upper (z = 0) and lower (z = zmax) sides.

Boundary conditions parameters

Option Description Value Default

lx Boundary condition at x = 0 int 0-3 2

hx Boundary condition at x = xmax int 0-3 2

ly Boundary condition at y = 0 int 0-3 2

hy Boundary condition at y = ymax int 0-3 2

lz Boundary condition at depth = 0 int 0-3 0

hz Boundary condition at z = zmax int 0-3 2
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boundary condition values

Value Type

0 Stress-free boundary

1 Dirichlet boundary

2 Supergrid boundary

3 Periodic boundary

11.7.2 developer [optional]

Warning: you need to be intimately familiar with the inner workings of SW4 to use this command.
Look in the source code to get a full understanding of what this command really does.

Syntax:
developer cfl=... checkfornan=...

Required parameters:
None

By setting the checkfornan keyword to on or yes, SW4 scans the solution arrays for floating point
exceptions and other erros resulting in NaN (Not a Number). The check is performed after each
time step.

developer parameters

Option Description Type Default

cfl CFL number (> 0) real 1.3

checkfornan Scan solution arrays for NaN string off
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Chapter 12

File formats

12.1 Discrete time function

The discrete time function interpolates values on a uniform grid in time, τj = t0 + (j − 1)δt,
j = 1, 2, . . . , Nd. The file is formatted. The first line of the file contains the reference time (t0),
time step (δt), and number of data points (Nd). The subsequent Nd lines in the file should contain
the function values gj = g(τj). The file should follow the following format:

Line Column 1 Column 2 Column 3

1 t0 (real) δt (real) Nd (integer)

2 g1 (real)

3 g2 (real)
...

...

Nd + 1 gNd
(real)

The time step must be positive, δt > 0, and at least seven data points must be given, Nd ≥ 7.

12.2 Topography

Topography is specified as elevation above mean sea level on a regular lattice in the horizontal
plane. There are two variants of the topography format: geographic or Cartesian. By default,
topography is specified as function of geographic coordinates in the horizontal plane. Alternatively,
the lattice can be specified in Cartesian coordinates. In both cases, the unit for elevation is meters
and the topography file must cover the entire horizontal extent of the computational domain.

12.2.1 Topography on a geographic lattice

Latitude and longitude should be given in degrees. Let the elevation be known at longitudes

ϕi, i = 1, 2, . . . , Nlon,

and latitudes
θj , j = 1, 2, . . . , Nlat,
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Note that the latitudes and the longitudes must either be strictly increasing or strictly decreasing,
but the step size may vary.

The elevation should be given on the regular lattice

ei,j = elevation at longitude ϕi, latitude θj .

Bi-cubic interpolation is used to define the elevation in between the lattice points.
The topography file should be an ASCII text file with the following format. The first line of

the file holds the number of longitude and latitude data points:

Nlon Nlat

On subsequent lines, longitude, latitude and elevation values are given in column first ordering:

ϕ1 θ1 e1,1

ϕ2 θ1 e2,1
...

...
...

ϕNlon θ1 eNlon,1

...
...

...

ϕ1 θNlat e1,Nlat

ϕ2 θNlat e2,Nlat

...
...

...

ϕNlon θNlat eNlon,Nlat

12.2.2 Topography on a Cartesian lattice

Cartesian coordinates should be given in meters ([m]). Let the elevation be known at x-coordinates

xi, i = 1, 2, . . . , Nx,

and y-coordinates
yj , j = 1, 2, . . . , Ny,

Note that the coordinate vectors must either be strictly increasing or strictly decreasing, but the step
size may vary. Also note that the step size can be different from the step size in the computational
grid. To guarantee that the topography grid covers the entire horizontal extent of the computational
domain, we require

min
i

xi ≤ 0, min
j

yj ≤ 0, max
i

xi ≥ xmax, max
j

yj ≥ ymax,

where xmax and ymax are defined by Equation (3.3). Bi-cubic interpolation is used to define the
elevation in between the lattice points.

The elevation should be given on the regular lattice

ei,j = elevation at Cartesian coordinate (x, y) = (xi, yj).
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The topography file should be an ASCII text file with the following format. The first line of the
file holds the number of data points in each direction:

Nx Ny

On subsequent lines, x, y and elevation values are given in column first ordering:

x1 y1 e1,1

x2 y1 e2,1
...

...
...

xNx y1 eNx,1

...
...

...

x1 yNy e1,Ny

x2 yNy e2,Ny

...
...

...

xNx yNy eNx,Ny

12.3 pfile

There are two variants of the pfile format: geographic or Cartesian. By default, geographic coor-
dinates are used to specify the location of the depth profiles in the horizontal plane. Alternatively,
the lattice can be specified in Cartesian coordinates. Note that different units are used in the two
cases. Pfiles are ASCII text formated.

12.3.1 pfile on a geographic lattice

The header has 7 lines and follows the following format:

Line Column 1 Column 2 Column 3 Column 4

1 Name (string)

2 ∆ [deg] (real)

3 Nlat (integer) Latmin [deg] (real) Latmax [deg] (real)

4 Nlon (integer) Lonmin [deg] (real) Lonmax [deg] (real)

5 Ndep (integer) dmin [km] (real) dmax [km] (real)

6 Ised (integer) IMoHo (integer) I410 (integer) I660 (integer)

7 Q-available? (logical)

The first line holds the optional name of the material model. Line 2 contains the parameter ∆,
which is used to average the material properties according to equation (6.1). Lines 3 and 4 contain
the number of lattice points as well as the starting and ending angles in the latitude and longitude
direction, respectively. Line 5 contains the number of depth values in each profile, followed by the
minimum and maximum depth measured in km. Line 6 supplies optional information about the
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index of some material discontinuities in each depth profile. Give -99 if not known. Note that
the index for each discontinuity (sediment, MoHo, 410, 660) indicates the row number within each
profile, for the material property just above the discontinuity. Hence, the subsequent entry in each
profile should have the same depth value and contain the material property just below the same
discontinuity. Line 7 should contain the single letter ’T’ or ’t’ if the subsequent data contains
quality factors (QP and QS); otherwise it should contain the single letter ’F’ or ’f’. The presence
of quality factors may alternatively be indicated by using the strings ’.TRUE.’, ’.true.’, ’.FALSE.’,
or ’.false.’.

The first seven lines of a pfile can look like this:

Caucasus

0.25

7 38.00 39.50

19 44.50 49.00

30 0.00 161.00

-99 -99 -99 -99

.TRUE.

The header is directly followed by Nlat × Nlon depth profiles, ordered such that the longitude
varies the fastest, that is, according to the pseudo-code:

for (Lati = Latmin; Lati <= Latmax; Lati+ = ∆lat)
for (Lonj = Lonmin; Lonj <= Lonmax; Lonj+ = ∆lon)

(save depth profile for Lati, Lonj)
end

end

Here, ∆lat = (Latmax −Latmin)/(Nlat − 1) and ∆lon = (Lonmax −Lonmin)/(Nlon − 1). In general,
∆lat ̸= ∆lon ̸= ∆.

The first line of each depth profile holds the latitude and longitude (in degrees as real numbers),
and the number of depth values, which must equal Ndep. For example a depth profile for latitude
33.108, longitude -115.66, with Ndep = 19 points in the depth direction starts with the line

33.108 -115.66 19

The subsequent Ndep lines have the following format:

Index (int) depth [km] Cp [km/s] Cs [km/s] ρ [g/cm3] QP QS

Note that QP and QS should only be present when indicated so by the Q-availability flag on line
7 of the header. Also note that the units are different than in other parts of SW4. In particular,
CP and CS should be given in km/s= 1000 m/s, and density (ρ) should be given in g/cm3 = 1000
kg/m3.

12.3.2 pfile on a Cartesian lattice

The header of the Cartesian grid pfile format consists of seven lines with the following information:
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Line Column 1 Column 2 Column 3 Column 4

1 Name (string)

2 h [m] (real)

3 Nx (integer) xmin [m] (real) xmax [m] (real)

4 Ny (integer) ymin [m] (real) ymax [m] (real)

5 Ndep (integer) dmin [m] (real) dmax [m] (real)

6 Ised (integer) IMoHo (integer) I410 (integer) I660 (integer)

7 Q-available? (logical)

This is essentially the same header as for the geographic coordinate format, with the only difference
that information on lines 2, 3, and 4 is different. The spacing, h, of the grid of depth profiles is
given on line 2. The number of depth profiles in the x-direction Nx with minimum and maximum
coordinate values are given on line 3. The same quantities for the y-direction are given on line 4.
Note that all distances, including the depth information on line 5, must be given in meters ([m]).

The header is directly followed by Nx ×Ny depth profiles, ordered such that the x-coordinate
varies the fastest, that is, according to the pseudo-code:

for (y = ymin; y <= ymax; y+ = h)
for (x = xmin; x <= xmax; x+ = h)

(save depth profile for x, y)
end

end

The first line of each depth profile holds the x-coordinate and the y-coordinate (in meters as real
numbers), and the number of depth values, which must equal Ndep. For example a depth profile
for x = 100.4m and y = 30.6m, with Ndep = 19 points in the depth direction starts with the line

100.4 30.6 19

The subsequent Ndep lines have the following format:

Index (int) depth [m] Cp [m/s] Cs [m/s] ρ [kg/m3] QP QS

QP and QS can be left out when indicated not present by the Q-availability flag on line 7 of the
header. Note that, unlike the pfiles on a geographic lattice, the units should here be the standard
MKS units, which normally are used in SW4.

12.4 ifile

The material surface file (ifile) should be an ASCII text file with the following format. We start by
assuming the material surfaces are given as function of geographic coordinates (input=geographic).
Modifications for the Cartesian case are described at the end of this section.

The first line of the file holds the number of longitude and latitude data points, as well as the
number of material surfaces:

Nlon Nlat Nmat
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On subsequent lines, longitude, latitude and Nmat surface depth values are given in column first
ordering:

Lon1 Lat1 d1,1,1 . . . dNmat,1,1

Lon2 Lat1 d1,2,1 . . . dNmat,2,1

...
...

...
...

LonNlon
Lat1 d1,Nlon,1 . . . dNmat,Nlon,1

...
...

...

Lon1 LatNlat
d1,1,Nlat

. . . dNmat,1,Nlat

Lon2 LatNlat
d1,2,Nlat

. . . dNmat,2,Nlat

...
...

...
...

LonNlon
LatNlat

d1,Nlon,Nlat
. . . dNmat,Nlon,Nlat

It is required that 0 ≤ dq,i,j ≤ dq+1,i,j .

12.4.1 Cartesian ifile

When the material surfaces are given as function of Cartesian coordinates (input=cartesian), the
first line of the file holds the number of data points in the “x” and “y” directions, as well as the
number of material surfaces:

Nx Ny Nmat

The subsequent lines have essentially the same format as in the geographic case. In the above
description, simply substitute “longitude” by “x” and “latitude” by “y”.

12.5 rfile

The rfile starts with a header followed by a data section. The header has two parts. The first part
contains 5 integers (4 bytes each), 3 doubles (8 bytes each) and a character array with a variable
number of elements (1 byte each):

Offset (bytes) Name Type Bytes

0 magic int 4

4 prec int 4

8 att int 4

12 az double 8

20 lon0 double 8

28 lat0 double 8

36 mlen int 4

40 mercstr char mlen

40+mlen Nb int 4
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Here, magic= 1 is used to determine the byte ordering on the file, i.e., if it was written by a
machine using big- or little-endianess. prec is the number of bytes per entry in the data section,
i.e., 4 for single precision and 8 for double precision. The flag att can currently be 0 or 1, and
indicates whether the visco-elastic attenuation parameters QP and QS are included in the data
section. The grid azimuth az gives the angle [deg] between North and the positive x-axis. The
geographical coordinates of the origin of the data in the horizontal plane is (lon0, lat0). The
number of characters in the string mercstr is mlen, and the number of blocks (patches) in the data
section is given by Nb.

The second part of the header contains 40 bytes of grid size information for each of the Nb grid
patches. The information is saved in the following format:

for (b = 1; b ≤ Nb; b++)

Offset (bytes) Name Type Bytes

o0 + 40(b− 1) hhb double 8

o0 + 8 + 40(b− 1) hvb double 8

o0 + 16 + 40(b− 1) z0b double 8

o0 + 24 + 40(b− 1) ncb int 4

o0 + 28 + 40(b− 1) nib int 4

o0 + 32 + 40(b− 1) njb int 4

o0 + 36 + 40(b− 1) nkb int 4

Here, o0 = 44+mlen, is the size (in bytes) of the first header section. hhb and hvb are the grid
sizes in the horizontal and vertical directions, respectively. z0b is the base z-level for block b. The
number of components in block b is ncb. Block number b has nib × njb × nkb grid points in the
(i, j, k) directions, respectively. Note that the first block is assumed to hold the elevation of the
topography/bathymetry, so z01 is not used.

The Cartesian coordinates (xi, yj , zk) of grid point (i, j, k) in patch b satisfy

xi = hhb(i− 1), yj = hhb(j − 1), zk = z0b + (k − 1)hvb.

It it important to notice that the vertical coordinate zk is interpreted as the depth below mean
sea level, i.e., it has the same meaning as the vertical coordinate of the computational mesh. This
means that some grid points in an rfile will be located above the topography/bathymetry.

The data section holds the content of the four-dimensional arrays ab(ncb, nib, njb, nkb) for each
grid patch 1 ≤ b ≤ Nb. Depending on the value of prec, each element is saved as a 4 byte float, or
an 8 byte double. To enable better parallel reading performance, the grid points are traversed in
“C”-order. The data blocks can be read by the pseudo-C code

for (b = 1; b ≤ Nb; b++)
for (i = 1; i ≤ nib; i++)
for (j = 1; j ≤ njb; j++)
for (k = 1; k ≤ nkb; k++)
for (c = 1; c ≤ ncb; c++)

read ab(c, i, j, k)
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The elevation of the topography/bathymetry is always stored in the first block. Note that it is
defined to be positive above mean sea level. For b ≥ 2, the material properties are stored in the
following order,

ab(c, i, j, k) =



ρ, c = 1,

VP , c = 2,

VS , c = 3,

QP , c = 4 (if att= 1),

QS , c = 5 (if att= 1),

b ≥ 2.

If a grid point is above the topography (i.e., in the air), you should set ρ = Vp = Vs = −999,
and QP = QS = −999 (if att= 1). If a grid point is above the bathymetry (i.e. in water), you
should set VS = −999, but give physical values to VP and ρ. Note that wave propagation in water
is currently not modeled by SW4 so those values are not currently used. However, setting correct
density and compressional wave speeds in water will allow the same material model to be used
when such modeling becomes available. It is also consistent with how water is handled in USGS’s
model of the San Francisco bay area.

A Matlab/octave reader of material models in the rfile format, called readmat.m, is provided
in the tools directory. A sample rfile model is included in the examples/rfile directory.

Restrictions and assumptions.

• The azimuth in the rfile must agree with the azimuth given in the grid command.

• The origin of the rfile does not have to agree with the origin of the computational grid. In
fact, the setup of a simulation is less prone to errors if the rfile domain is at least a few
percent larger than the extent of the computational domain.)

• The first block holds the elevation of the topography/bathymetry, so nc1 = 1. The following
blocks must have either 3 or 5 components, i.e.,

ncb =


1, b = 1,

3, att= 0 and b ≥ 2,

5, att= 1 and b ≥ 2.

• Because the topography/bathymetry is a function of the horizontal coordinates, the first block
must have nk1 = 1.

• All patches must have the same horizontal extent, i.e.,

(nib − 1)hhb = const., (njb − 1)hhb = const., b ≥ 1,

and the z-coordinate of the last grid point in one block must match the first one of the next
block,

z0b + (nkb − 1)hvb = z0b+1, b = 2, 3, . . . , Nb − 1.

However, neither z01 nor hv1 are used when parsing the rfile.

• It is assumed that the horizontal grid size for the topography/bathymetry is the same as the
first material block,

hh1 = hh2, ni1 = ni2, nj1 = nj2.
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12.6 sfile

The sfile command provides material data and topography, similar to the rfile, but with ma-
terials defined on a curvilinear mesh with refinement boundaries. Each grid of material data
has corresponding top and bottom interfaces that defines the vertical distribution of grids points,
which is constant grid spacing across nz total points (including end points). This layout, along
with the coarsest horizontal grid spacing, hh, defines the (x,y,z) point location relative to the origin
(lon,lat,azim) for every point.

The sfile files are self-describing in HDF5 format, with the following fields:

Name Type Size

“Origin longitude, latitude, azimuth” H5T IEEE F64LE 3

“Coarsest horizontal grid spacing” H5T IEEE F64LE 1

“Attenuation” H5T STD I32LE 1

“ngrids” H5T STD I32LE 1

“Min, max depth” H5T IEEE F64LE 2

Group /Z interfaces

“z interface {0...ngrids}” H5T IEEE F32LE (nx,ny)[ng]

Group /Material model

“grid {0...ngrids-1}/{mat}” H5T IEEE F32LE (nx,ny,nz)[ng]

The output of h5dump -A header and metadata is below (lightly edited):

HDF5 "berkeley.sfile" {

GROUP "/" {

ATTRIBUTE "Attenuation" {

DATATYPE H5T_STD_I32LE

DATASPACE SCALAR

DATA {

(0): 1

}

}

ATTRIBUTE "Coarsest horizontal grid spacing" {

DATATYPE H5T_IEEE_F64LE

DATASPACE SCALAR

DATA {

(0): 100

}

}

ATTRIBUTE "Min, max depth" {

DATATYPE H5T_IEEE_F64LE

DATASPACE SIMPLE { ( 2 ) / ( 2 ) }

DATA {

(0): -557.6, 6387.5
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}

}

ATTRIBUTE "Origin longitude, latitude, azimuth" {

DATATYPE H5T_IEEE_F64LE

DATASPACE SIMPLE { ( 3 ) / ( 3 ) }

DATA {

(0): -122.25, 37.93, 143.638

}

}

ATTRIBUTE "ngrids" {

DATATYPE H5T_STD_I32LE

DATASPACE SCALAR

DATA {

(0): 3

}

}

GROUP "Material_model" {

GROUP "grid_0" { ... }

GROUP "grid_1" { ... }

GROUP "grid_2" {

ATTRIBUTE "Horizontal grid size" {

DATATYPE H5T_IEEE_F64LE

DATASPACE SCALAR

DATA {

(0): 400

}

}

ATTRIBUTE "Number of components" {

DATATYPE H5T_STD_I32LE

DATASPACE SCALAR

DATA {

(0): 5

}

}

DATASET "Cp" {

DATATYPE H5T_IEEE_F32LE

DATASPACE SIMPLE { ( 31, 31, 34 ) / ( 31, 31, 34 ) }

}

DATASET "Cs" { ... }

DATASET "Qp" { ... }

DATASET "Qs" { ... }

DATASET "Rho" { ... }

}

}

GROUP "Z_interfaces" {

DATASET "z_values_0" {
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DATATYPE H5T_IEEE_F32LE

DATASPACE SIMPLE { ( 121, 121 ) / ( 121, 121 ) }

}

DATASET "z_values_1" {

DATATYPE H5T_IEEE_F32LE

DATASPACE SIMPLE { ( 121, 121 ) / ( 121, 121 ) }

}

DATASET "z_values_2" {

DATATYPE H5T_IEEE_F32LE

DATASPACE SIMPLE { ( 61, 61 ) / ( 61, 61 ) }

}

DATASET "z_values_3" {

DATATYPE H5T_IEEE_F32LE

DATASPACE SIMPLE { ( 31, 31 ) / ( 31, 31 ) }

}

}

}

}

12.7 SRF-HDF5

Based on the SRF (Standard Rupture Format), we have created the SRF-HDF5 format, which
stores the same amount of information in a more compact HDF5 file that is smaller in size and can
be read faster.

To convert an existing SRF file into HDF5 format, we have provided a python script under
tools/srf2hdf5.py in the sw4 repository. The script requires two command line parameters to
specify the input SRF file and the output SRF-HDF5 file, e.g. python srf2hdf5.py rupture.srf

rupture.h5.
The output of h5dump -A header and metadata is below, the “PLANE” and “VERSION”

attributes store the header block of the SRF file, with the number of plane segments implicitly
implied in the dataspace of the “PLANE” attribute.

The “POINTS” and “SR1” datasets store the data block of the SRF file. Different from the
SRF format, where the slip rate at each time step for a direction follows immediately after each
point source, we concatenate all slip rates and put them in a single 1D dataset, which is optimized
for data read. To access the slip rates of a particular point source, one needs to accumulate the
number of rates before the desired one and calculate its offset in the “SR1” dataset.

Only “SR1” is converted in the SRF-HDF5 format as others (SR2 and SR3) are ignored by sw4.

HDF5 "m6.5-20.0x13.0.s500.v5.1.srf.h5" {

GROUP "/" {

ATTRIBUTE "PLANE" {

DATATYPE H5T_COMPOUND {

H5T_IEEE_F32LE "ELON";

H5T_IEEE_F32LE "ELAT";

H5T_STD_I32LE "NSTK";

H5T_STD_I32LE "NDIP";
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H5T_IEEE_F32LE "LEN";

H5T_IEEE_F32LE "WID";

H5T_IEEE_F32LE "STK";

H5T_IEEE_F32LE "DIP";

H5T_IEEE_F32LE "DTOP";

H5T_IEEE_F32LE "SHYP";

H5T_IEEE_F32LE "DHYP";

}

DATASPACE SIMPLE { ( 1 ) / ( 1 ) }

DATA {

(0): {

-122.218,

37.8433,

100,

65,

20,

13,

144,

90,

3,

-5,

8

}

}

}

ATTRIBUTE "VERSION" {

DATATYPE H5T_IEEE_F32LE

DATASPACE SCALAR

DATA {

(0): 2

}

}

DATASET "POINTS" {

DATATYPE H5T_COMPOUND {

H5T_IEEE_F32LE "LON";

H5T_IEEE_F32LE "LAT";

H5T_IEEE_F32LE "DEP";

H5T_IEEE_F32LE "STK";

H5T_IEEE_F32LE "DIP";

H5T_IEEE_F32LE "AREA";

H5T_IEEE_F32LE "TINIT";

H5T_IEEE_F32LE "DT";

H5T_IEEE_F32LE "VS";

H5T_IEEE_F32LE "DEN";

H5T_IEEE_F32LE "RAKE";

H5T_IEEE_F32LE "SLIP1";
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H5T_STD_I32LE "NT1";

H5T_IEEE_F32LE "SLIP2";

H5T_STD_I32LE "NT2";

H5T_IEEE_F32LE "SLIP3";

H5T_STD_I32LE "NT3";

}

DATASPACE SIMPLE { ( 6500 ) / ( 6500 ) }

}

DATASET "SR1" {

DATATYPE H5T_IEEE_F32LE

DATASPACE SIMPLE { ( 144616 ) / ( 144616 ) }

}

}

}

12.8 sac

SAC files hold the time history of one component of the solution at a fixed point in space. A detailed
description of the SAC format can be found at http://www.iris.edu/manuals/sac/manual.html,
and we refer to that web page for a detailed description of the file format.

We provide a simplified Matlab/octave reader of SAC files called readsac.m in the tools

directory. Note that only a subset of the header information is parsed by this reader.

12.9 sachdf5

The HDF5 format holds the time history of all components of the solution at a fixed point in space.
There are 4 global attributes in the root group of the file, including DATETIME, a time string (in
UTC) recording the start of the simulation; UNIT, the unit for the data (“m”, “m/s”, etc.); DELTA,
the sample interval; and ORIGINTIME, the origin time in seconds, relative to the start time of SW4
calculation and seismogram of the earliest source.

Then the time-series data of each station in separate groups, using the station name as the
group name. Inside each group, there is the number of valid points stored in the data array, the
station location in both xyz coordiate in SW4 domain (m) and latitude, longitude, depth. In
the case when the surface grids are too sparse, we also store the actual location and the distance
between the actual and user-specified location in ACTUALSTLA,STLO,STDP, ACTUALSTX,STY,STZ,
and DISTFROMACTUAL. The data array may be named with X, Y, Z, or EW, NS, UP depending
on the isnsew= option specified in the rec/sac command. For each of these component, there are
also *CMPAZ and *CMINC (e.g. XCMPAZ, XCMPINC) recording its azimuth and inclination.

Note that the dataspace of the data array is pre-allocated to hold the entire timeseries data of
the simulation, when the SW4 is terminate early (i.e. in case of checkpoint/restart), only a portion
of the data in the array is valid, with the size recorded in the NPTS field. When reading the data, it
is recommended to read the NPTS value first and only use the first NPTS values from the data array.

The HDF5 file stores data in an self-describing way, with the following fields:
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Name Type Size

DATETIME H5T STRING string len

UNIT H5T STRING string len

DELTA H5T STD F32LE 1

ORIGINTIME H5T STD F32LE 1

Group /BK.BDM (station name)

ISNSEW H5T IEEE I32LE 1

LOC H5T IEEE I32LE 1

NPTS H5T IEEE I32LE 1

STLA,STLO,STDP H5T STD F32LE 3

ACTUALSTLA,STLO,STDP H5T STD F32LE 3

STX,STY,STZ H5T STD F32LE 3

ACTUALSTX,STY,STZ H5T STD F32LE 3

DISTFROMACTUAL H5T STD F32LE 1

X or EW H5T STD F32LE NPTS

XCMPAZ or EWCMPAZ H5T STD F32LE 1

XCMPINC or EWCMPINC H5T STD F32LE 1

Y or NS H5T STD F32LE NPTS

YCMPAZ or NSCMPAZ H5T STD F32LE 1

YCMPINC or NSCMPINC H5T STD F32LE 1

Z or UP H5T STD F32LE NPTS

ZCMPAZ or UPCMPAZ H5T STD F32LE 1

ZCMPINC or UPCMPINC H5T STD F32LE 1

The output of h5dump -A header and metadata is below (lightly edited):

HDF5 "sta.hdf5" {

GROUP "/" {

ATTRIBUTE "DATETIME" {

DATATYPE H5T_STRING {

STRSIZE 27;

STRPAD H5T_STR_NULLTERM;

CSET H5T_CSET_ASCII;

CTYPE H5T_C_S1;

}

DATASPACE SCALAR

DATA {

(0): "2019-10-02T02:18:58.000000"

}
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}

ATTRIBUTE "UNIT" {

DATATYPE H5T_STRING {

STRSIZE 2;

STRPAD H5T_STR_NULLTERM;

CSET H5T_CSET_ASCII;

CTYPE H5T_C_S1;

}

DATASPACE SCALAR

DATA {

(0): "m"

}

}

DATASET "DELTA" {

DATATYPE H5T_IEEE_F32LE

DATASPACE SIMPLE { ( 1 ) / ( 1 ) }

}

DATASET "ORIGINTIME" {

DATATYPE H5T_IEEE_F32LE

DATASPACE SIMPLE { ( 1 ) / ( 1 ) }

}

GROUP "BK.BDM" {

DATASET "LOC" {

DATATYPE H5T_STD_I32LE

DATASPACE SIMPLE { ( 1 ) / ( 1 ) }

}

DATASET "NPTS" {

DATATYPE H5T_STD_I32LE

DATASPACE SIMPLE { ( 1 ) / ( 1 ) }

}

DATASET "STLA,STLO,STDP" {

DATATYPE H5T_IEEE_F32LE

DATASPACE SIMPLE { ( 3 ) / ( 3 ) }

}

DATASET "STX,STY,STZ" {

DATATYPE H5T_IEEE_F32LE

DATASPACE SIMPLE { ( 3 ) / ( 3 ) }

}

DATASET "X" {

DATATYPE H5T_IEEE_F32LE

DATASPACE SIMPLE { ( 2209 ) / ( 2209 ) }

}

DATASET "XCMPAZ" {

DATATYPE H5T_IEEE_F32LE

DATASPACE SIMPLE { ( 1 ) / ( 1 ) }

}
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DATASET "XCMPINC" {

DATATYPE H5T_IEEE_F32LE

DATASPACE SIMPLE { ( 1 ) / ( 1 ) }

}

DATASET "Y" {

DATATYPE H5T_IEEE_F32LE

DATASPACE SIMPLE { ( 2209 ) / ( 2209 ) }

}

DATASET "YCMPAZ" {

DATATYPE H5T_IEEE_F32LE

DATASPACE SIMPLE { ( 1 ) / ( 1 ) }

}

DATASET "YCMPINC" {

DATATYPE H5T_IEEE_F32LE

DATASPACE SIMPLE { ( 1 ) / ( 1 ) }

}

DATASET "Z" {

DATATYPE H5T_IEEE_F32LE

DATASPACE SIMPLE { ( 2209 ) / ( 2209 ) }

}

DATASET "ZCMPAZ" {

DATATYPE H5T_IEEE_F32LE

DATASPACE SIMPLE { ( 1 ) / ( 1 ) }

}

DATASET "ZCMPINC" {

DATATYPE H5T_IEEE_F32LE

DATASPACE SIMPLE { ( 1 ) / ( 1 ) }

}

}

GROUP "BK.BKS" {

...

}

}

12.10 image

Important note: The image file format used by SW4 is different from that used by WPP. To
emphasize the change in format, all SW4 image files have extension .sw4img. A reader for image
files is provided in the matlab/octave function readimage.m in the tools directory.

Images files hold cross-sectional data on a composite grid and are written in a binary format.
The image file starts with a header followed by a data section, which contains a two-dimensional
grid function for each grid patch in the composite grid. The header has two parts. The first part
contains 5 integers (4 bytes each), 2 doubles (8 bytes each) and a character array with 25 elements
(1 byte each), i.e., 61 bytes of data:
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Offset (bytes) Name Type Bytes

0 prec int 4

4 Np int 4

8 t double 8

16 plane int 4

20 ξ double 8

28 mode int 4

32 grdinfo int 4

36 creation-time char[25] 25

Here, prec is the number of bytes per entry in the data section, i.e., 4 for single precision and 8 for
double precision. The positive number of data patches is stored in Np, and t ≥ 0 is the simulation
time at which the image was saved. The plane variable indicates the orientation of the plane. It
is 0 for a constant x-plane, 1 for a constant y-plane, and 2 for a constant z-plane. The coordinate
value is stored in ξ. For example, if plane=0, the data is saved along x = ξ. The type of data is
saved in mode. The following 32 different types of data can be saved on an image file,

mode 1 2 3 4 5 6 7 8 9 10 11 12 13

Data u(x) u(y) u(z) ρ λ µ Cp Cs u
(x)
ex u

(y)
ex u

(z)
ez div(u) |curl(u)|

mode 14 15 16 17 18 19 20 21 22 23 24

Data div(ut) |curl(ut)| lat lon topo x y z u
(x)
error u

(y)
error u

(z)
error

mode 25 26 27 28

Data |ut|
√
(u

(x)
t )2 + (u

(y)
t )2 maxt

√
(u

(x)
t )2 + (u

(y)
t )2 maxt

∣∣∣u(z)t

∣∣∣
mode 29 30 31 32

Data |u|
√
(u(x))2 + (u(y))2 maxt

√
(u(x))2 + (u(y))2 maxt

∣∣u(z)∣∣
Here, |a| denotes the magnitude of the vector a ∈ ℜ3 and uex denotes the exact solution, which
also is needed to calculate the error in the solution, uerror. Note that image modes 9, 10, 11, 22,
23, and 24, only are available when the exact solution is known, i.e., when SW4 is run in one of its
test modes. Also note that image modes 19-21 store the coordinates of the grid in the data section
of the image file. These modes provide an alternative way of saving the grid when it is curvilinear.

The grdinfo variable can have values 0 or 1. No grid information is saved on the image file if
grdinfo=0. In this case all data patches are on a Cartesian grid, which can be reconstructed from
the information in the header of the image file (see below). If grdinfo=1, the z-coordinates of the
curvilinear grid are saved in an additional grid patch, following the last data patch. The final field
in the first part of the header is a character array with 25 elements. It holds the creation time
of the image file, as obtained from the C++ function localtime(). On a Mac running OSX, the
time has the format “Thu Feb 28 14:24:07 2013”. Exactly 25 characters are saved and the string is
truncated if it is longer than that.
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The second part of the header contains grid size information (32 bytes) for each of the Np data
patches. The information is saved in the following format:

for (p = 1; p ≤ Np; p++)

Offset (bytes) Name Type Bytes

61 + 32(p− 1) hp double 8

69 + 32(p− 1) zminp double 8

77 + 32(p− 1) ibp int 4

81 + 32(p− 1) nip int 4

85 + 32(p− 1) jbp int 4

89 + 32(p− 1) njp int 4

Here hp is the grid size and zminp is the starting value of the z-coordinate in patch p. There
are nip by njp data points on patch p with starting indices ibp and jbp. Currently, ibp = 1 and
jbp = 1. The Cartesian grid can be constructed from the grid size information,

plane=0:


x
(p)
i,j = ξ,

y
(p)
i,j = hp(i− 1), ibp ≤ i ≤ ibp + nip − 1,

z
(p)
i,j = zminp + hp(j − 1), jbp ≤ j ≤ jbp + njp − 1,

plane=1:


x
(p)
i,j = hp(i− 1), ibp ≤ i ≤ ibp + nip − 1,

y
(p)
i,j = ξ,

z
(p)
i,j = zminp + hp(j − 1), jbp ≤ j ≤ jbp + njp − 1,

plane=2:


x
(p)
i,j = hp(i− 1), ibp ≤ i ≤ ibp + nip − 1,

y
(p)
i,j = hp(j − 1), jbp ≤ j ≤ jbp + njp − 1,

z
(p)
i,j = ξ.

The header is followed by grid function data on each of the Np patches. The data is saved as
floats (prec=4), or doubles (prec=8). Each patch of the data is stored as in a two-dimensional
array, u(p)(i, j), where ibp ≤ i ≤ ibp + nip − 1 and jbp ≤ j ≤ jbp + njp − 1. The data can be read
as outlined by the following pseudo code:

for (p = 1; p ≤ Np; p++){
for (j = 1; j ≤ njp; j++){

for (i = 1; i ≤ nip; i++){
read u(p)(i− 1 + ibp, j − 1 + jbp)

}
}

}

If grdinfo=0, there is no additional information on the image file.
If grdinfo=1, the z-coordinates of the curvilinear grid are also saved on the image file (as floats

or doubles depending on that value of prec). Note that the curvilinear data always corresponds
to patch number p = Np. The z-coordinates corresponding to the data are stored as an additional
patch, which can be read using the pseudo code:
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p = Np;

for (j = 1; j ≤ njp; j++){
for (i = 1; i ≤ nip; i++){

read z(p)(i− 1 + ibp, j − 1 + jbp)
}

}

The dimensions of the arrays u(Np) and z(Np) are always the same. When grdinfo=1, the z
(Np)
i,j

coordinates replace the above definition of the grid for the cases plane=0 and plane=1. For
plane=2, the grid is defined by the (x, y) coordinates, which currently remains Cartesian also for
a curvilinear grid.

12.11 imagehdf5

The image files in HDF5 format hold identical data as in the image file, but are stored as HDF5
attributes and datasets. To improve the I/O efficiency, the header data and the patch data are
stored in arrays instead of individually in the binary format (i.e. all the ni values of multiple
patches are stored in the same HDF5 dataset, with its length equal to the number of patches).

The output of h5dump -A imagehdf5.file is below:

HDF5 "image.cycle=0.y=40000.p.sw4img.h5" {

GROUP "/" {

ATTRIBUTE "creationtime" {

DATATYPE H5T_STRING {

STRSIZE 25;

STRPAD H5T_STR_NULLTERM;

CSET H5T_CSET_ASCII;

CTYPE H5T_C_S1;

}

DATASPACE SCALAR

DATA {

(0): "Fri Jan 24 14:15:23 2020"

}

}

DATASET "coordinate" {

DATATYPE H5T_IEEE_F64LE

DATASPACE SIMPLE { ( 1 ) / ( 1 ) }

}

DATASET "grid" {

DATATYPE H5T_IEEE_F32LE

DATASPACE SIMPLE { ( 31031 ) / ( 31031 ) }

}

DATASET "grid_size" {

DATATYPE H5T_IEEE_F64LE

DATASPACE SIMPLE { ( 2 ) / ( 2 ) }

}
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DATASET "gridinfo" {

DATATYPE H5T_STD_I32LE

DATASPACE SIMPLE { ( 1 ) / ( 1 ) }

}

DATASET "mode" {

DATATYPE H5T_STD_I32LE

DATASPACE SIMPLE { ( 1 ) / ( 1 ) }

}

DATASET "ni" {

DATATYPE H5T_STD_I32LE

DATASPACE SIMPLE { ( 2 ) / ( 2 ) }

}

DATASET "nj" {

DATATYPE H5T_STD_I32LE

DATASPACE SIMPLE { ( 2 ) / ( 2 ) }

}

DATASET "npatch" {

DATATYPE H5T_STD_I32LE

DATASPACE SIMPLE { ( 1 ) / ( 1 ) }

}

DATASET "patches" {

DATATYPE H5T_IEEE_F32LE

DATASPACE SIMPLE { ( 307307 ) / ( 307307 ) }

}

DATASET "plane" {

DATATYPE H5T_STD_I32LE

DATASPACE SIMPLE { ( 1 ) / ( 1 ) }

}

DATASET "time" {

DATATYPE H5T_IEEE_F64LE

DATASPACE SIMPLE { ( 1 ) / ( 1 ) }

}

DATASET "zmin" {

DATATYPE H5T_IEEE_F64LE

DATASPACE SIMPLE { ( 2 ) / ( 2 ) }

}

}

}

12.12 volimage

The volimage command generates (often very large) binary files holding three-dimensional volu-
metric data. A reader for volimage files is provided in the matlab/octave script readimage3d.m
in the tools directory. Alternatively, users might want to visualize the data in these files with the
open source VisIt post processor. volimage files can also be used to define the material properties
in SW4, using the vimaterial command. SW4 volimage files have extension .3D.mode.sw4img,
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where mode is one of ux, uy, uz, rho, lambda, mu, p, s, qp, qs.
The format of the volimage files is essentially the same as the format of image files, with the

exception that the sizes of the data patches are specified by six integers in the volimage files,
instead of four in the image file format. The first 61 bytes of the header of the volimage format is
identical to the image format given in the previous section, i.e.,

Offset (bytes) Name Type Bytes

0 prec int 4

4 Np int 4

8 t double 8

16 plane int 4

20 ξ double 8

28 mode int 4

32 grdinfo int 4

36 creation-time char[25] 25

The plane and coordinate (ξ) variables are not needed for three-dimensional data. They are both
set to -1 in a volimage file. The number of possible variables to save is more restricted than for the
image command. The volume image format stores one of the following variables with corresponding
integer code for the mode variable in the file header:

mode 1 2 3 4 5 6 7 8 14 15

Data u(x) u(y) u(z) ρ λ µ Cp Cs Qp Qs

After the 61 byte header follows the dimensional information for the patches stored on the file in
the following order:

for (p = 1; p ≤ Np; p++) {
Offset (bytes) Name Type Bytes

61 + 40(p− 1) hp double 8

69 + 40(p− 1) zminp double 8

77 + 40(p− 1) ibp int 4

81 + 40(p− 1) nip int 4

85 + 40(p− 1) jbp int 4

89 + 40(p− 1) njp int 4

93 + 40(p− 1) kbp int 4

97 + 40(p− 1) nkp int 4

}

Next, the data patches are stored as 4 or 8 byte floats, as indicated by the prec entry in the
header. These can be read as a one-dimensional sequence of bytes in the order

115



for (p = 1; p ≤ Np; p++){
for (k = 1; k ≤ nkp; k++){

for (j = 1; j ≤ njp; j++){
for (i = 1; i ≤ nip; i++){

read u(p)(i− 1 + ibp, j − 1 + jbp, k − 1 + kbp)
}

}
}

}

If grdinfo=0, there is no additional information on the volimage file. If grdinfo=1, the z-
coordinates of the curvilinear grid are also saved on the volimage file (as floats or doubles depending
on prec). Note that the curvilinear grid always corresponds to the last patch, p = Np. The grid
coordinate can be read in the same way as the data patches:

p = Np;

for (k = 1; k ≤ nkp; k++){
for (j = 1; j ≤ njp; j++){

for (i = 1; i ≤ nip; i++){
read z(p)(i− 1 + ibp, j − 1 + jbp, k − 1 + kbp)

}
}

}

The x- and y− coordinates are uniformly distributed, also for the curvilinear grid, and can therefore
always be reconstructed from the grid size h, and the index bounds. The z-coordinate on other
patches, when present, will always be uniform, and can be reconstructed from h and the zmin
variable.

12.13 ssioutput

The ssiouput command generates (potentially very large) binary HDF5 files holding three-
dimensional volumetric data for the ESSI application.

The format of the ssioutput files is self-describing in HDF5 (use h5dump -A to see header
metadata):
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Name Type Size

“ESSI xyz grid spacing” H5T IEEE F64LE 1

“ESSI xyz origin” H5T IEEE F64LE 3

“Grid azimuth” H5T IEEE F64LE 1

“Grid lon-lat origin” H5T IEEE F64LE 2

“cycle start, end” H5T STD I32LE 2

“time start” H5T IEEE F64LE 1

“timestep” H5T IEEE F64LE 1

“vel {0,1,2} ijk layout” H5T IEEE F64LE cycle X 3D size

“z coordinates” H5T IEEE F64LE (optional) 3D size
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Appendix A

Testing SW4

Once SW4 has been installed on your system, it is a good idea to verify that the code is working
properly. For this purpose, the SW4 source code distribution includes a python(3) script for running
several tests and checking the solutions against previously verified results. Here we describe the
procedure when SW4 is built with make. The tests can also be performed when SW4 is built with
CMake, see the SW4 installation guide [19] for details.

After SW4 has been built with make, go to the pytest directory and run test_sw4.py. If the
sw4 executable resides in the optimize directory, you can run the basic tests by doing:

shell> cd pytest

shell> ./test_sw4.py

If all goes well, you should see the following output:

>shell test_sw4.py

Running all tests for level 0 ...

Starting test # 1 in directory: meshrefine with input file: refine-el-1.in

Test # 1 Input file: refine-el-1.in PASSED

Starting test # 2 in directory: meshrefine with input file: refine-att-1.in

Test # 2 Input file: refine-att-1.in PASSED

...

Starting test # 12 in directory: lamb with input file: lamb-1.in

Test # 12 Input file: lamb-1.in PASSED

Out of 12 tests, 12 passed and 0 failed.

Some aspects of the testing can be modified by providing command line arguments to test_sw4.py.
For a complete list of options do test_sw4.py --help, which currently give the output:

shell> ./test_sw4.py --help

usage: test_sw4.py [-h] [-v] [-l {0,1,2}] [-m MPITASKS] [-d SW4_EXE_DIR]

optional arguments:

-h, --help show this help message and exit

-v, --verbose increase output verbosity

-l {0,1,2}, --level {0,1,2}

testing level
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-m MPITASKS, --mpitasks MPITASKS

number of mpi tasks

-d SW4_EXE_DIR, --sw4_exe_dir SW4_EXE_DIR

name of directory for sw4 executable

Note that the directory name for the sw4 executable should be given relative to the main sw4

directory.
NOTE: On some systems, it is necessary to start an MPI daemon before any parallel programs

can be executed. This is often done by issuing the command

mpd &

Ask your local system administrator if you have problems running sw4 in parallel.

A.1 Method of manufactured solutions

The method of manufactured solutions provides a general way of testing the accuracy of numerical
solutions of partial differential equations, including effects of heterogeneous material properties and
various boundary conditions on complex geometries. The test scripts can be found in the directory

.../sw4/examples/twilight

In these tests, we take the material properties to be

ρ(x, y, z) = Aρ (2 + sin(ωmx+ θm) cos(ωmy + θm) sin(ωmz + θm)) ,

µ(x, y, z) = Aµ (3 + cos(ωmx+ θm) sin(ωmy + θm) sin(ωmz + θm)) ,

λ(x, y, z) = Aλ (2 + sin(ωmx+ θm) sin(ωmy + θm) cos(ωmz + θm)) .

The internal forcing, boundary forcing and initial conditions are chosen such that the exact (man-
ufactured) solution becomes1

ue(x, y, z, t) = sin(ω(x− cet)) sin(ωy + θ) sin(ωz + θ),

ve(x, y, z, t) = sin(ωx+ θ) sin(ω(y − cet)) sin(ωz + θ),

we(x, y, z, t) = sin(ωx+ θ) sin(ωy + θ) sin(ω(z − cet)).

The values of the material parameters (ωm, θm, Aρ, Aλ, Aµ) and the solution parameters (ω, θ,
ce), can be modified in the input script. Since the exact solution is know, it is possible to evaluate
the error in the numerical solution. By repeating the same test on several grid sizes, it is possible
to establish the convergence rate of the numerical method.

The basic twilight tests use a single grid, a flat topography, and use the unit cube (x, y, z) ∈
[0, 1]3 as the computational domain. The numerical solution is simulated up to time t = 0.8 on a
grid with 313, 613, 1213, and 2413 grid points, respectively. These cases are provided in the four
input scripts:

flat-twi-1.in flat-twi-2.in flat-twi-3.in flat-twi-4.in

1A contour plot of these functions could help explain why we call it twilight zone testing.
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input file Nx h eh = ∥u− uex∥∞ ratio∞ rate∞

flat-twi-1.in 31 3.333 · 10−2 6.85 · 10−4 – –

flat-twi-2.in 61 1.667 · 10−2 3.99 · 10−5 17.16 4.10

flat-twi-3.in 121 8.333 · 10−3 2.01 · 10−6 19.85 4.31

flat-twi-4.in 241 4.167 · 10−3 1.40 · 10−7 14.36 3.84

Table A.1: Max norm errors in the displacement at time t = 0.8, when the free surface is flat. The
convergence rate is calculated as log2(e2h/eh).

The first three cases are small enough to be run on a single or dual core laptop computer. The
fourth case uses about 14 million grid points and needs to be executed on a slightly larger machine.
Assuming openmpirun is used to execute parallel programs, you run the first of these cases on 2
processes with the command

cd examples/twilight

openmpirun -np 2 ../../optimize/sw4 flat-twi-1.in

The results for the four cases are given in the output files

flat-twi-1.out flat-twi-2.out flat-twi-3.out flat-twi-4.out

The errors in max and L2 norm in the numerical solution are reported near the bottom of the
output files. Some of these numbers are summarized in Table A.1.

The case of a non-planar free surface is tested by the scripts

gauss-twi-1.in gauss-twi-2.in gauss-twi-3.in gauss-twi-4.in gauss-twi-5.in

Here, the computational domain is basically a cube with side 1, where the top surface is shaped
as a Gaussian hill. Let the shape of the top surface be described by z = τ(x, y). Because the
z-axis is directed downwards, and the Gaussian hill has amplitude 0.05, the function τ satisfies
−0.05 ≤ τ ≤ 0. The keyword zmax=0.25 in the topography command tells SW4 to build the
curvilinear grid between z = τ(x, y) and z = 0.25. A Cartesian grid is used to cover the rest of
the computational domain, i.e., for 0.25 ≤ z ≤ 1. The numerical solution is calculated up to time
t = 0.8 on grids with grid size h = 1/30, 1/60, 1/120, and 1/240, respectively. The three first cases
are relatively small and can be run on a single or dual core laptop computer. The number of grid
point is increased by a factor of eight between each grid refinement, and the number of time steps
is doubled. The results of the simulations are given in the four output files

gauss-twi-1.out gauss-twi-2.out gauss-twi-3.out gauss-twi-4.out

The errors in max norm are summarized in Table A.2.
Note that some image files are generated by these scripts. They are placed in the sub-directories

gauss_31, gauss_61, etc. We encourage the reader to look at these image files, for example by
reading them into matlab/octave using the script tools/readimage.m. An example is given in
Figure A.1.
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input file Nx h eh = ∥u− uex∥∞ ratio∞ rate∞

gauss-twi-1.in 31 3.333 · 10−2 1.74 · 10−3 – –

gauss-twi-2.in 61 1.667 · 10−2 1.93 · 10−4 9.01 3.17

gauss-twi-3.in 121 8.333 · 10−3 9.11 · 10−6 21.1 4.40

gauss-twi-4.in 241 4.167 · 10−3 5.83 · 10−7 15.6 3.96

Table A.2: Max norm errors in the displacement at time t = 0.8, with a Gaussian hill topography.
The number of grid points and the grid size refer to the Cartesian grid. The convergence rate is
calculated as log2(e2h/eh).

Figure A.1: Contour plot of the u(x) component of the solution along the plane x = 0.5. The image
file was written with the script gauss-twi-3.in. The solid black line shows the shape of the top
surface. The dashed black line indicates the interface between the curvilinear and Cartesian grids.
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A.2 Lamb’s problem

In this section we use the testlamb command to evaluate the accuracy of the numerical solution
of Lamb’s problem. An introduction to Lamb’s problem is given in Section 4.5.1.

We consider an elastic half-space with shear speed Cs = 1 m/s, compressional speed Cp =
√
3

m/s and density ρ = 1 kg/m3. The setup can be found in examples/lamb/lamb-1.in,

fileio path=lamb-h0p04

grid x=12 y=12 z=6 h=0.04

time t=15.0

supergrid gp=50

testlamb rho=1 cp=1.732050807568877

source x=6 y=6 z=0 fx=0 fy=0 fz=1 t0=0 freq=1 type=C6SmoothBump

rec x=10.0 y=6.0 z=0 file=sg1 usgsformat=1 sacformat=0

rec x=10.0 y=10.0 z=0 file=sg2 usgsformat=1 sacformat=0

The super-grid far-field layer is 50 grid points wide, corresponding to the width ℓ = 2. The error
is evaluated along the free surface z = 0, inside of the supergrid layers, i.e., 2 ≤ (x, y) ≤ 10, and is
saved on the file lamb-h0p04/LambErr.txt. Each line of this file has four columns corresponding to
the time, max error, L2 error, max norm of solution. Since the surface waves propagate with speed
Cr ≈ 0.92 and the source time function is zero after t = 1, the exact solution becomes identically
zero along the surface after time t ≈ 1+4

√
2/0.92 ≈ 7.15. After this time, the error in the numerical

solution is due to artificial reflections from the super-grid layers. In Figure A.2 we plot the L2 norm
of the error as function of time for grid sizes h = 0.04 and h = 0.02. Here, the case with grid size
h = 0.02 can be found in examples/lamb/lamb-2.in. Note that the error converges to zero as
O(h4) for t > 1, i.e., after the singular point force has stopped acting. Another way of assessing
the quality of the super-grid layers is by inspecting the solution in the vicinity of the super-grid
layers. The two rec commands save the solution at (x, y, z) = (6, 10, 0) and (x, y, z) = (10, 10, 0).
We can use the plotusgs matlab/octave script to inspect the numerical solution, see Figure A.3.
We conclude that there are no visible artifacts due to the truncation of the computational domain.

A.3 Point source test

There is an analytical solution of the elastic wave equation when the forcing is a point source
term, and the domain is unbounded. The forcing can either be a point force or a point moment
tensor source. In both these cases, the analytical solution is singular (i.e. infinite) at the point
source, while the point source is acting. For time functions that are identically zero for t ≥ t1, the
analytical solution becomes bounded for t > t1. The smoothness of the solution is determined by
the smoothness of the source time function.

The accuracy of the numerical solution can be evaluated by comparing it to the analytical
solution using the testpointsource command. As before we refine the grid by halving the grid
size to evaluate the convergence rate of the numerical solution. Since we previously tested the
point force discretization by solving Lamb’s problem, we will here focus on the point moment
tensor source discretization. Example input files are given in the files ps-dir1.in, ps-dir2.in,
and ps-dir3.in in the tools/pointsource directory. Each input file has a corresponding .out

file with the results we obtained while running these cases.
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Figure A.2: The L2 norm of the error in the solution of Lamb’s problem, as function of time. The
blue and green lines correspond to h = 0.04 and h = 0.02, respectively.

The source properties are specified by exactly one regular source command. In this case the
time function is a C6SmoothBump. The coarsest grid is setup in the file ps-dir1.in,

fileio path=dir-h0p04

grid x=8 y=8 z=8 h=0.04

time t=2.5

# dirichlet conditions on all sides

boundary_conditions lx=1 hx=1 ly=1 hy=1 lz=1 hz=1

# testing point sources

testpointsource rho=1 cp=1.6 cs=0.8

# source

source x=4.0 y=4.0 z=4.0 Mxx=1 Myy=1 Mzz=1 Mxy=0 Mxz=0 Myz=0 t0=0 freq=1 type=C6SmoothBump

The source is located in the center of a cube with side 8, so the shortest distance from the
source to a boundary is 4. The solution satisfies homogeneous Dirichlet boundary conditions on all
boundaries. The fastest wave speed is 1.6, so the solution on the boundary is identically zero until
time t = 4/1.6 = 2.5. There can therefore not be any reflections from the boundaries for t ≤ 2.5,
and the analytical solution is reliable up to this point in time. The error in the numerical solution
at t = 2.5 (the end of the simulation) is reported at the end of each run. These numbers are
summarized in Table A.3. Since the convergence rate tends to 4 as the grid is refined, we conclude
that the numerical solution is a fourth order accurate approximation of the analytical solution.
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Figure A.3: The x, y, and z-components of the solution of Lamb’s problem at (x, y, z) = (10, 10, 0).

input file h eh = ∥u− uex∥∞ ratio∞ rate∞

ps-dir1.in 0.04 2.09 · 10−3 – –

ps-dir2.in 0.02 1.41 · 10−4 14.82 3.88

ps-dir3.in 0.01 8.94 · 10−6 15.77 3.97

Table A.3: Max norm errors in the displacement at time t = 2.5. The convergence rate is calculated
as log2(e2h/eh).

More detailed information of the error in the numerical solution is saved in the file PointSourceErr.txt,
which is written in the output directory that is specified by the fileio command. Each line in this
file has 4 entries: time, max-error, L2-error, and max-norm of the solution. In Figure A.4, we plot
the max-error as function of time for the three grid sizes. The source time function is identically
zero for t ≥ 1. Before t = 1, the analytical solution is unbounded at the point source. For this
reason, a few points around the point source are excluded from the calculation of the error in the
numerical solution. For t > 1, we see that the error in the numerical solution is reduced by a factor
≈ 16 each time the grid size is halved.

We remark that the testpointsource command can also be used to evaluate the accuracy of
the supergrid far field layers. In this case, the Dirichlet boundary conditions should be replaced by
supergrid conditions on all six boundaries of the computational domain. Such an experiment is set
up in the input files pointsource-sg1.in, pointsource-sg2.in, and pointsource-sg3.in in the
tools/pointsource directory. Each input file has a corresponding .out file that holds the output
from these cases. As before, the errors for each case are reported in the file PointSourceErr.txt
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Figure A.4: The max norm of the error in the point source test. The blue, green, and red lines
correspond to h = 0.04, h = 0.02, and h = 0.01, respectively.

in the sub-directories pointsource-h0p04+, pointsource-h0p02+, and pointsource-h0p01+.
The L2 norm of the error is shown in Figure A.5. The reader is enouraged to study these results,
experiment with the duration of the simulation, and the width of the super grid layers.
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Figure A.5: The L2-norm of the error in the point source test. This simulation was run to time
t = 5 and the errors after time t ≈ 3 are due to artificial reflections from the super-grid layers. The
blue, green, and red lines correspond to h = 0.04, h = 0.02, and h = 0.01, respectively.
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Appendix B

Run time and memory requirements

B.1 Run time

The execution times shown in Table B.1 were obtained by running SW4 on problems with approx-
imately 2.8× 105 to 3.3× 105 grid points per processor. Timings were measured on 16 processors
of Cab, a parallel supercomputer at LLNL, in August of 2013. The SW4 executable was compiled
with Intel compilers at optimization level -O. The execution times are given in seconds per grid
point and time step. While the absolute numbers in Table B.1 are machine dependent and destined
to change in the future, the relative cost of various solver configurations is likely to stay more or
less constant. Note that the visco-elastic cases used 3 mechanisms. For the case with topography,
about 31% of the grid points were in the curvilinear grid.

We note that solving the visco-elastic wave equations with m = 3, requires around 3 times more
CPU time than the purely elastic case. Using topography requires about 1.5 times more CPU time
when 31% of the domain is discretized on a curvilinear grid. By extrapolation, if all grid points
were in the curvilinear grid, the increase in CPU time would have been about a factor 2.7. The
strong scaling properties are not perfect. Hence, the performance might be degraded when the
number of processors is increased while keeping the number of grid points fixed. However, the total
computational time always decreases with increasing number of processors. More experimentation
is needed to better evaluate the strong scaling properties of SW4.

Configuration Solver Execution time [s] Relative factor

Cartesian elastic 2.62 · 10−8 1

Topography elastic 4.05 · 10−8 1.5

Cartesian visco-elastic 7.96 · 10−8 3.0

Topography visco-elastic 1.37 · 10−7 5.2

Table B.1: Execution time per time step and grid point for different configurations, both for solving
the elastic and the visco-elastic wave equations. The relative factor is the execution time relative
to the Cartesian case for the elastic wave equation.
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Configuration solver Memory [bytes/grid point] Asymp. [bytes/grid point]

Cartesian grid elastic 188 168

Topography elastic 208 200

Cartesian grid visco-elastic (m = 3) 475 448

Topography visco-elastic (m = 3) 500 468

Table B.2: Observed memory usage (third column) and theoretical asymptotic limit (fourth column)
for different grid and solver configurations. The visco-elastic case has 3 mechanisms and the case
with topography has 31% of the grid point in the curvilinear grid.

B.2 Memory usage

The memory usage in Table B.2 was obtained by running SW4 on a single processor using 4
million grid points. By inspection of the source code, we found the following number of 3-D arrays
holding double precision (8 bytes) floating point variables: 21 for Cartesian grids, another 8 for
topography (coordinates and metric coefficients in the curvilinear grid), and an additional 2+11∗m
for a m-mechanism visco-elastic material. These numbers correspond to the asymptotic memory
requirements presented in the right column of Table B.2, which agree reasonably well with the
observed memory usage, shown in column three. The observed numbers tend to the theoretical
asymptotic numbers as the problem size increases. For the computations with topography, the
curvilinear grid holds about 31% of the grid points. This fraction is taken into account in the
asymptotic estimate.

For parallel runs, the memory per grid point will be somewhat higher, because of duplicated
ghost points at the processor boundaries. Here we only report the memory usage for a single
processor run. Note that the volimage command saves a copy of the image variable over the full
3D volume. This adds (at single precision) 4 bytes per grid point and per volume image command.
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[16] N. A. Petersson and B. Sjögreen. Stable and efficient modeling of anelastic attenuation in
seismic wave propagation. Comm. Comput. Phys., 12(1):193–225, 2012.
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[18] N. A. Petersson and B. Sjögreen. Wave propagation in anisotropic elastic materials and curvi-
linear coordinates using a summation-by-parts finite difference method. J. Comput. Phys.,
299:820–841, 2015.
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attenuation, 49
attenuation parameters

phasefreq, nmech, maxfreq, minppw, qmul-
tiplier, 72

block parameters
vp, vs, rho, vpgrad, vsgrad, rhograd, qp, qs,

73
x1, x2, y1, y2, z1, z2, absdepth, 74

boundary conditions parameters
lx, hx, ly, hy, lz, hz, 93

boundary conditions values
stress-free, dirichlet, supergrid, periodic, 94

checkpoint parameters
file, cycleInterval, restartfile, restartpath, 90

command
ablock, 78
anisotropy, 78
attenuation, 72
block, 73
boundary conditions, 93
checkpoint, 89
developer, 94
fileio, 65
globalmaterial, 77
gmg, 75
gmt, 88
grid, 65
ifile, 75
image, 83
imagehdf5, 85
material, 76
pfile, 74
prefilter, 68
randomblock, 77
rec, 81
rechdf5, 82
refinement, 80

rfile, 74
rupture, 71
rupturehdf5, 71
sac, 81
sachdf5, 82
sfile, 75
sfileoutput, 88
source, 69
ssioutput, 87
supergrid, 68
testenergy, 92
testlamb, 91
testpointsource, 91
testrayleigh, 92
time, 67
topography, 79
twilight, 90
volimage, 86

command line options
-v version info, 10

coordinate system, 11

developer parameters
cfl, checkfornan, 94

fileformats, 95
discrete time function, 95
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image, 110
imagehdf5, 113
pfile, 97
rfile, 100
rupturehdf5, 105
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sachdf5, 107
sfile, 103
ssioutput, 116
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filename, directory, 75
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grid size, 28

ifile parameters
filename, input, 76
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modes - divdudt, curldudt, magdudt, hmag-
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uyerr, uzerr, 85
timing - time, timeInterval, cycle, cycleIn-

terval, 84

material, 36
material parameters

id, vp, vs, rho, qp, qs, 76
vp2, vs2, rho2, vpsqrt, vssqrt, rhosqrt, 77
vpgrad, vsgrad, rhograd, 76

mesh refinement, 46
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performance, 127
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rechdf5 parameters
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rfile parameters

filename, directory, 75
rupture parameters

file, 71
rupturehdf5 parameters

file, 71

sfile parameters
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sfileoutput parameters
file, sampleFactor, sampleFactorH, sample-

FactorV, 89
source parameters
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70
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point force - f0, fx, fy, fz, 71
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source time function
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srun, 9
ssioutput parameters

file, 88
supergrid parameters

gp, dc, 68
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testenergy parameters
cpcsratio seed writeEvery filename, 93

testing, 118
lambs, 122
pointsource, 122
twilight, 119

testlamb parameters
x, y, cp, rho, fz, 91

testpointsource parameters
cp, cs, rho, diractest, 92

testrayleigh parameters
cp, cs, rho, nwl, 92

time parameters
t, steps, utcstart, 68

topography, 33
topography parameters

gaussianAmp, gaussianXc, gaussian Yc, gaus-
sianLx, gaussianLy, 80

input, file, resolution, zmax, order, smooth,
80

twilight parameters
errorlog, omega, c, phase, momega, mphase,

amprho, ampmu, amplambda, 91

units, 11

volimage parameters
file, mode, precision, 86
modes - ux, uy, uz, rho, p, s, lambda, mu,
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timing - cycle, cycleInterval, time, timeIn-
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133


	Introduction
	How to cite SW4
	Acknowledgments

	Getting started
	Running SW4
	Version information (-v)
	Running on the parallel machines at Livermore Computing


	Governing equations, coordinate system, and units
	Geographical coordinates and projections
	Spheroidal mapping
	The Proj.4 library

	Super-grid damping layers

	Sources, time-functions, and grid size
	Point force and moment tensor sources in SW4
	Predefined time functions
	Gaussian
	GaussianInt (or Erf)
	Ricker
	RickerInt
	Brune
	BruneSmoothed
	Liu
	Triangle
	Sawtooth
	Ramp
	Smoothwave
	VerySmoothBump
	C6SmoothBump
	GaussianWindow
	Dirac

	Discrete time function
	What is the frequency content in the time function?
	How to choose the grid size
	Lamb's problem


	Topography
	Gaussian hill topography
	Topography grid file
	efile topography
	rfile topography
	sfile topography
	gmg topography

	The material model
	The block command
	The efile command
	The rfile command
	The sfile command
	The gmg command
	The pfile command
	The ifile command
	The vimaterial command

	Mesh refinement
	Attenuation
	Viscoelastic modeling

	Output options
	Setting the output directory
	Time-history at a receiver station: the rec (or sac) command
	The ASCII text format
	The SAC HDF5 format
	Notes on the rec command

	2-D cross-sectional data: the image command
	Checkpoint and Restart the checkpoint command
	Creating a GMT script with the gmt command

	Examples
	The elastic layer over half-space problem: LOH.1
	The visco-elastic layer over half-space problem: LOH.3

	Keywords in the input file
	Basic commands
	fileio [optional]
	grid [required]
	time [required]
	supergrid [optional]
	prefilter [optional]

	Sources [required]
	source
	rupture
	rupturehdf5

	The material model [required]
	attenuation [optional]
	block
	pfile
	rfile
	sfile
	gmg
	ifile
	material
	globalmaterial [optional]
	randomblock [optional]
	anisotropy [optional]
	ablock [optional]

	Topography command [optional]
	topography [optional]
	refinement [optional]

	Output commands [optional]
	rec (or sac) [optional]
	rechdf5 (or sachdf5) [optional]
	image [optional]
	imagehdf5 [optional]
	volimage [optional]
	ssioutput [optional]
	gmt [optional]
	sfileoutput
	checkpoint [optional]

	SW4 testing commands [optional]
	twilight
	testlamb
	testpointsource
	testrayleigh
	testenergy

	Advanced simulation controls [optional]
	boundary_conditions [optional]
	developer [optional]


	File formats
	Discrete time function
	Topography
	Topography on a geographic lattice
	Topography on a Cartesian lattice

	pfile
	pfile on a geographic lattice
	pfile on a Cartesian lattice

	ifile
	Cartesian ifile

	rfile
	sfile
	SRF-HDF5
	sac
	sachdf5
	image
	imagehdf5
	volimage
	ssioutput

	Testing SW4
	Method of manufactured solutions
	Lamb's problem
	Point source test

	Run time and memory requirements 
	Run time
	Memory usage


