
Crafting Quality Research Software and
Navigating Publication in Software Journals

August 10, 2023

Rene Gassmoeller, Lorraine Hwang, Mohamed Gouiza

Computational Infrastructure for Geodynamics

Take the 1-min
pre-workshop quiz

menti.com
Code:
5846 8672

Introduction and Logistics

- 3 Blocks, 90 min each, 30 min breaks
- Session 1 - Fundamentals of Research Software Development
- Session 2 - Documentation and Reproducibility
- Session 3 - Navigating Publication in Software Journals

- We want interactive discussions
- Please use your real names in Zoom configuration
- Use chat to interact with us or other participants
- Unmute if you have a question that may be of broader interest
- Keep your camera on, if you feel comfortable with it

- This is a CIG workshop, please follow our Code of Conduct:
- We want an inclusive environment, where everyone can express their ideas free of

harassment or discrimination
- Follow the slides and other materials on: http://bit.ly/2023-cig-joss

Who are we?

- Computational Infrastructure for Geodynamics
(geodynamics.org):

"NSF-funded community-driven organization advancing Earth science by
providing the infrastructure for the development and dissemination of software
for geophysics and related fields."

- Rene Gassmoeller, University of Florida, Technical Lead

- Lorraine Hwang, UC Davis, co-Director

- Mohamed Gouiza, UC Davis, Project Scientist

Who are you?

- Let's take a look at the pre-assessment quiz we sent out

Starting remarks

- Crafting good enough research software is no magic,
there are published guidelines and checklists

- Many steps to create good research software are purely mechanical, this will
not solve the inner design of your software, but improve a lot of the
"scaffolding" around its core functionality

- These mechanical steps take some effort, but pay off over time

Best Practices

- Useful Materials:
- The Computational Infrastructure for Geodynamics maintains software best practices

https://geodynamics.org/software/software-bp
And a contributing checklist for CIG software
https://github.com/geodynamics/best_practices/blob/main/ContributingChecklist.md

- CIG also maintains a repository that can be used as a template to create/improve projects:
https://github.com/geodynamics/software_template

- The Journal of Open Source Software maintains submission instructions
https://joss.readthedocs.io/en/latest/submitting.html
And a reviewer checklist
https://joss.readthedocs.io/en/latest/review_checklist.html

- If your software fulfills CIG or JOSS criteria, it fulfills most criteria for both

Publication criteria for software

● We will present the CIG and JOSS criteria
○ Licensing
○ Version Control
○ Contribution + Authorship
○ Installation
○ Software design
○ Documentation
○ Testing
○ Reproducibility

● Discuss the meaning, justification, and implementation of each
● Provide further resources for a deeper dive on your own

Licensing

- CIG best practices:
Include a ‘LICENSE’ file: Add a plain text copy of your OSI approved software license to your repository:
https://opensource.org/licenses

- JOSS best practices:
License: Does the repository contain a plain-text LICENSE file with the contents of an OSI approved software license?

CIG Best practices Minimum Standard Target

Licensing Open source Same as Minimum Same as Minimum

Licensing

- Open source software is a clearly defined concept:
https://opensource.org/osd/

- Make your software open source by applying an OSI approved license:
https://choosealicense.com/

- You retain the authorship + copyright, but grant a license to use and modify
- Most common OSI licenses fall in two categories:

Permissive (e.g. MIT license) and copyleft (e.g. GPL license)
- Permissive licenses allow modifications to be distributed under different

licenses (e.g. closed source commercial), while copyleft licenses require
distribution as open-source

- Permissive licenses can be beneficial if you imagine commercial applications,
or if you simply want to put the least restrictions on the use of your software

Version control

- JOSS:
Repository: Is the source code for this software available at the repository url?
The software must be hosted at a location where users can open issues and propose code changes without
manual approval of (or payment for) accounts.

CIG Best practices Minimum Standard Target

Version Control All source in version
control.

Differentiation
between
maintenance and
new development.

(a) New features
added in separate
branches. (b) Stable
development
branches for rapid
release of new
features.

Version control

- Version Control Systems were
created to prevent this:

Version control

- Version Control Systems were
created to prevent this:

- A VCS is like an unlimited undo/redo
- git is the de-facto standard version control

system for software (other: svn, mercurial)
- You (and everyone else) are likely using

git
- Git can help to answer:

- Who included this code and why?
- Was this bug already in the code I

presented at a conference last year?
- How can we merge these changes into

that other version?
- An excellent and complete git tutorial

(~8hrs) is provided by software carpentry:
https://swcarpentry.github.io/git-novice/

- If you just need a summary of git
commands, use this cheat sheet:
https://education.github.com/git-cheat-she
et-education.pdf

Git best practices

1. Commit logical (atomic) changesets
2. Commit Early, Commit Often
3. Write Reasonable Commit Messages
4. Don’t Commit Auto-generated Files

5. Don’t Merge Half-Done Work
6. Test Before You Merge
7. Use Branches
8. Agree on a Workflow

https://ruleoftech.com/2019/best-practices-for-version-control-in-8-steps

main

'main' will replace 'master'
as default branch name

Reasonable commit messages

https://cbea.ms/git-commit/

1. Separate subject from body with a blank line
2. Limit the subject line to 50 characters
3. Capitalize the subject line
4. Do not end the subject line with a period
5. Use the imperative mood
6. Wrap the body at 72 characters
7. Use the body to explain what and why vs.

how

Reasonable commit messages

1. Separate subject from body with a blank line
2. Limit the subject line to 50 characters
3. Capitalize the subject line
4. Do not end the subject line with a period
5. Use the imperative mood
6. Wrap the body at 72 characters
7. Use the body to explain what and why vs.

how

Publicly hosted: Online software repositories

- There are commercial and open-source online hosted git
repositories and collaboration platforms
(GitHub, Bitbucket, GitLab)

- GitHub is the largest platform for open-source and
commercial software development today (>50 million users) and
hosts most of CIG's software repositories in the organization
name geodynamics

- CIG and JOSS are platform agnostic, use whichever platform
you prefer (as long as it is open and accessible without manual
approval or cost for users)

- See the software carpentry tutorial:
https://swcarpentry.github.io/git-novice/07-github.html

Online software repository recommendations

- Protect your main branches, even against maintainers
- Only merge changes via pull requests, no direct pushes
- Every merge requires a review by another maintainer (if possible)
- Preparing to grow your software: Provide write access to other

developers generously, but judiciously
- Make use of automation features (discussed later)

Contribution + Authorship

● JOSS Contribution and authorship: Has the
submitting author made major contributions to the
software? Does the full list of paper authors seem
appropriate and complete?

● CIG best practices:
a. Optional: Include an ‘AUTHORS’ file

 List the authors of your code. This may or may
not be the same as those listed in the citation
and/or the list of project committers.

b. Optional: Include an ‘ACKNOWLEDGE’ file
 Acknowledge funding agencies or other
sources of support to credit.

c. Alternatively a more modern approach is
CodeMeta, e.g. by including a codemeta.json
file all citation information is standardized and
machine readable

● Share ownership generously
● Openly acknowledge and credit

contributors just like you would in
publications

● Credit makes it more likely to gain new
contributors

Example AUTHORS file:

Installation

JOSS:
Does installation proceed as outlined in the documentation?
Is there a clearly-stated list of dependencies? Ideally these should be handled with an automated
package management solution.

CIG Best
practices

Minimum Standard Target

Portability,
configuration,
and building

(a) Codes builds
on Unix-like
machines with
free tools. (b)
Portable build
system.

Minimum + (a) Dependency
checking. (b) Automation and
portability of configuration
and building. (c) Each
simulation outputs all
configuration and build
options for reproducibility.

Standard + (a) Selection of
compilers, optimization, build flags
during configuration without
modifying files under version
control. (b) Multiple builds using
same source. (c) Allows installation
to a central location.

Installation Best Practices

● A portable build system, e.g.,
Python: https://packaging.python.org/en/latest/tutorials/packaging-projects/
CMake: https://cmake.org/
GNU Autoconf: https://www.gnu.org/software/autoconf/

● Example CIG software installation instructions:
○ Python: BurnMan
○ C/C++: CitcomS (GNU Autoconf), ASPECT (CMake)
○ Fortran: Rayleigh

● Hand-written Makefiles are discouraged, because they limit operating system
and compiler choice!

● We will discuss dependency management as part of the reproducibility
section in session 2

A 2-page CMake tutorial

● CMake is an open-source, operating-system independent, powerful build
system that is widely used and available

● It stores its configuration in a file called CMakeLists.txt
● CMakeLists.txt contains information to compile, install, and package a code
● Its commands are case-insensitive
● A minimal CMakeLists.txt could look as simple as this:

cmake_minimum_required(VERSION 3.9.1)
project(CMakeHello CXX)
set(CMAKE_CXX_STANDARD 14)
add_executable(cmake_hello main.cpp)

Sets minimum cmake version
Names the project and enables the language
minimum language standard
Create executable depending on all listed source files

A 2-page CMake tutorial

● CMake has a tutorial:
https://cmake.org/cmake/help/latest/guide/tutorial/index.html

● This for example discusses how to include external libraries, build libraries,
install, test, and package software, inject configuration/system information into
your source code, e.g. to output library versions, configuration options, …

● Example CMakeLists configuration files:
○ ASPECT: https://github.com/geodynamics/aspect/blob/main/CMakeLists.txt

Software Design and Coding Practices
CIG Best
practices

Minimum Standard Target

Coding (a) User-friendly specification of parameters at
run time. (b) Development plan, updated
annually. (c) Comments in code with purpose of
each function. (d) Users can add features or
alternative implementations without modifying
main branch. (e) User errors generate message
that helps user correct the problem.

Standard + (a) Functionality
implemented as a library
rather than an application. (b)
Output of provenance
information. (c) Parallel
access to inputs/outputs. (d)
Checkpointing.

JOSS: not specified, but helpful for reviewers

Software Design and Coding Practices

● This workshop is not primarily a software design workshop
● Software design is a career - Software Engineers exist for a reason
● Increasingly common career path in science: Research Software Engineer
● Tips based on books and personal experience
● What is good design?

"Good Design Is Easier to Change Than Bad Design"

● Decoupling
● DRY
● Naming things
● Run-time configuration

The Pragmatic Programmer

Decoupling

When we try to pick out anything by itself, we find it hitched to everything else in the Universe.
➤ John Muir, My First Summer in the Sierra

"Decoupled code is easier to change."

Easier change means better design.

Decoupling

ASPECT plugin graph

● Decouple functionality through interfaces
● Each of ASPECT's >100 plugins (blue

circles) implements only one of a small
number of interfaces (green rectangles)

● Each interface defines how to interact with
a plugin (e.g. every initial condition for
temperature has a function called
initial_temperature)

● This structure can be implemented for all
object-oriented languages, and can be
simulated in C and Fortran using function
pointers

"Prefer Interfaces to Express Polymorphism"

Decoupling

ASPECT plugin graph

● It is often tempting to store information as
global data

● However, global data couples parts of your
program together

● Separate data according to responsibility
● If you cannot avoid global data, hide it

behind a function (e.g. "get_timestep()"),
this allows you to change the function
implementation later

"Avoid global data"

DRY - Don't repeat yourself

"Every piece of knowledge must have a single, unambiguous, authoritative
representation within a system." The Pragmatic Programmer

DRY - Don't repeat yourself

"Every piece of knowledge must have a single, unambiguous, authoritative
representation within a system."

What does that mean?

A line consists of a start point, and end point, and a length.

DRY - Don't repeat yourself

"Every piece of knowledge must have a single, unambiguous, authoritative
representation within a system."

What does that mean?

A line consists of a start point, and end point, and a length.

What if we change the end and forget to update the length?

DRY prevents this potential bug

DRY - Don't repeat yourself

"Every piece of knowledge must have a single, unambiguous, authoritative
representation within a system."

● Many people think DRY means “don’t copy-and-paste lines of source code.”
● But DRY is about the duplication of knowledge, of intent.
● If you perform the same operation many times in your code: Unify it's

knowledge in a single function or class

Naming things

The beginning of wisdom is to call things by their proper name.
➤ Confucius

There are only two hard things in computer science:
cache invalidation and naming things.

● Use self-explanatory variable names that convey intent
● Follow the culture in your field or project
● Start function names with verbs (get_…, transform_…), use nouns for

variables (time_step, density)
● The time of 80-character screens and 1-character variable names is over ->

avoid abbreviations
● The better you name things, the less comments you have to write

Naming things

The beginning of wisdom is to call things by their proper name.
➤ Confucius

There are only two hard things in computer science:
cache invalidation and naming things.

● Use self-explanatory variable names that convey intent

ASPECT source code example

Comments

● Document intent and motivation, not mechanics
● "Build Documentation In, Don’t Bolt It On"
● When possible: Simplify code instead of explaining how it works

ASPECT source code example

Run-time configuration

● Expressing run-time configuration as files makes your code more flexible
● "Bend, don't break"
● Simplifies testing with different input (see later session on testing)
● Use standard file formats (e.g. json, yaml, ini), this way you can use existing

libraries to read them
● Or: Copy input systems from existing software
● If you cannot use input files: At least place configuration options in the same

place (file)
● Output the configuration options

Resources for better software design

● David Thomas, Andrew Hunt: "The Pragmatic Programmer"
○ One of the defining books for good software design practices

● Robert C. Martin: "Clean Code", And "The Clean Coder"
○ More in-depth guides to good software design and best practices

● Michael C. Feathers: "Working Effectively with Legacy Code"
○ Great guide if you already have old code and don't know where to start improving

● None of these books are introductions to programming! For that see, e.g.:
https://swcarpentry.github.io/python-novice-inflammation/

Exercise: Apply the software template

● Questions?

● Take time to download or clone the CIG software template:
https://github.com/geodynamics/software_template

● Copy + paste the parts that apply to your software into your project
● Ask questions so that everyone can learn from them
● Link to these slides: http://bit.ly/2023-cig-joss
● We will continue at 11 am Pacific, 2 pm East Coast with Session 2

(Documentation, Testing, Reproducibility)

Session 2 - Documentation, Testing, Reproducibility
"English is Just Another Programming Language"

The Pragmatic Programmer

Documentation
CIG Best
practices

Minimum Standard Target

Document
ation

(a) Instructions for installation. (b)
Description of all parameters. (c)
Explanation of physics the code
simulates. (d) Cookbook examples
with input files. (e) Citable
publication. (f) Documentation
provided online or offline.

(a) Description of
workflow for
research use. (b)
Description of
how to extend
code in
anticipated ways.

Standard + (a) Guidelines on
parameter scales/combinations
for which code is
designed/tested. (b) FAQs or
knowledge base. (c)
Documentation provided in
dynamic form and available
offline.

Documentation

JOSS:

● A statement of need: Do the authors clearly state what problems the software is designed to
solve and who the target audience is?

● Installation instructions: Is there a clearly-stated list of dependencies? Ideally these should
be handled with an automated package management solution.

● Example usage: Do the authors include examples of how to use the software (ideally to
solve real-world analysis problems).

● Functionality documentation: Is the core functionality of the software documented to a
satisfactory level (e.g., API method documentation)?

● Automated tests: Are there automated tests or manual steps described so that the
functionality of the software can be verified?

● Community guidelines: Are there clear guidelines for third parties wishing to 1) Contribute to
the software 2) Report issues or problems with the software 3) Seek support

A statement of need

● Do the authors clearly state what problems the software is designed to solve
and who the target audience is?

● Let your users know what they can expect from your software
● An example: ASPECT

ASPECT is a code to simulate convection in Earth's mantle and elsewhere. It has grown from a pure mantle-convection
code into a tool for many geodynamic applications including applications for inner core convection, lithospheric scale
deformation, two-phase flow, and numerical methods development.

● Let's write a statement of need for your software:
https://www.menti.com/al2afk43embn
or menti.com, code: 3277 0881

Documentation Overview: Structure

● A file called README.md in the
root folder acts as one entrypoint

● The webpage of your project is
another entrypoint

● You want to minimize duplication
of information

● We will discuss the
implementations
in the CIG software template

US
ER

README.md

Website

Documentation

Documentation: README.md

● README.md is the most likely entrypoint for GitHub user and
users who download first and ask questions later

● You can fulfill many publication criteria with a well written
README

● Keep in mind that README is one file/one page. Keep it
short and link to more extensive sections of your
documentation.

● We will discuss the sections of the template README.md:
https://github.com/geodynamics/software_template

Documentation: Website

● While your source-code lives in your online repository, you
typically want a separate project website to showcase
pictures, videos, interactive/dynamic content

● 3 typical options:
○ Self-hosted
○ Hosted by your online repository (GitHub pages, GitLab pages)
○ Hosted by readthedocs.org or another service

● Advantages of online repository and readthedocs.org:
○ Automatically built from latest version - Keep code and doc in sync
○ Easy links between website and code
○ Store multiple versions (e.g. release and development)

Documentation: Community Guidelines

● Both CIG and JOSS require a file called CONTRIBUTING.md that describes
how to participate in your project

● Community Guidelines help by:
○ Making it more likely users will contribute
○ Reducing the amount of questions you receive
○ Forming a more friendly and open community

● Let's take a look through the CONTRIBUTING.md of the software template

opensource.guide

Documentation: Offline vs Online

● Documentation of geoscientific codes happens in mostly two varieties:
○ A PDF manual generated from LaTex source files
○ An online website (html), generated from source files in a markdown format (.md, or .rst)

● Both have pros/cons, which one you choose will depend on the history of your
project, the needs of your community, and available development resources

● LaTex (offline) and Sphinx (online) templates can be found here:
https://github.com/geodynamics/software_template/tree/main/doc

● The Sphinx template is hosted online here:
https://software-template.readthedocs.io/en/latest/

LaTex Documentation: pros/cons

Pros Cons

Commonly used for publications Static content, how often regenerated?

Render formulas and complex tables Where to host to make available?

PDFs are easily archivable Binary included in repository?

Easy to package and ship No easy online link to sections

Package dependencies

Online Documentation: pros/cons

Pros Cons

Always updated + available without limit Uncommon directives (yet another
language to write in)

Easy links to repository / files First time configuration effort

Host multiple versions (devel, release) Bound to a hosting service

Host multiple formats (pdf, html) Harder to test locally

Easy to search + navigate

2-page tutorial: Setting up a Sphinx documentation

We will work through the Sphinx template included in the CIG software template:
https://github.com/geodynamics/software_template/tree/main/doc/sphinx_template
Which results in the following documentation:
https://software-template.readthedocs.io

In particular we will discuss the files:

● the start page of the documentation
● the conf.py configuration file
● the environment.yml dependency file
● the .readthedocs.yml configuration file

2-page tutorial: Setting up a Sphinx documentation

To reiterate the important terms:

● Sphinx is the software that converts .md/.rst files into .html documentation
● Markdown (.md) / ReStructuredText (.rst) are the formats of source files
● ReadTheDocs is a website that allows the automatic building and hosting of

generated documentation (e.g. generated by Sphinx)
● ReadTheDocs can be integrated into GitHub repositories to automatically

rebuild documentation
● Let's take a look at the ReadTheDocs project for the software template:

https://readthedocs.org/projects/software-template/

5 min break: Questions about Documentation?

What type of documentation would you like to create?

https://www.menti.com/al2afk43embn
or menti.com, code: 3277 0881

Testing

Why?

https://xkcd.com/2030/

JOSS: Automated tests: Are there automated tests or manual steps described so
that the functionality of the software can be verified?

Testing
CIG Best
practices

Minimum Standard Target

Testing (a) Code includes tests that
verify it runs properly. (b)
Results of accuracy and/or
performance benchmarks (if
established by the
community).

Code includes pass/fail
tests that verify it runs
properly. (b)
Development pipeline
uses continuous
integration to automate
running test suite.

(a) Pass/fail unit testing for
verification at a fine grain level.
(b) Method of Manufactured
Solutions for verification at a
coarse grain level. (c) Use of
code coverage tools to assess
gaps in test coverage.

Testing prevents software bugs

- A software bug is an error, flaw or fault in a computer program or system that
causes it to produce an incorrect or unexpected result, or to behave in
unintended ways. Wikipedia

- Bugs were known and found as far back as the 19th century
- Ada King, Countess of Lovelace, computing pioneer and possibly the first to

write a computer program in 1842 (an algorithm for the analytical engine
invented but never finished by Charles Babbage and her in 1837) wrote:

... an analysing process must equally have been performed in order to furnish the
Analytical Engine with the necessary operative data; and that herein may also lie a
possible source of error. Granted that the actual mechanism is unerring in its
processes, the cards may give it wrong orders.

Software bugs

- “First actual case of bug
being found” is reported by
Grace Hopper in 1947, her
colleagues found a moth in
the Harvard Mark II
computer, blocking a relay

Software bugs

- Most security risks you read about in the news are caused by a bug
- Bugs create a huge economic cost and create a risk for society
- Famous bugs:

- 1962: NASA Mariner 1 lost contact to ground control during launch, the backup system had a
bug (a missing hyphen ‘-’) and steered the rocket towards a populated area on Earth, NASA
aborted the launch by destroying the rocket

- 1986: The THERAC-5 radiation therapy device had a software bug, the device administered a
radiation overdose, 3 patients died and 3 suffered permanent health damage

- 1996: The first Ariane 5 rocket crashed because of a variable type conversion error, estimated
damage: $370m

- 2016: ESA’s Schiaparelli Mars lander crashed, because a vibration of one of the landers arms
was interpreted as having landed, leading to engine cutoff at an altitude of 3.7km, $230m

- 2017: WannaCry (~$4 billion) and NotPetya (>$10 billion) attacks are the most expensive
individual cyber attacks so far, enabled by software bugs

What is a test?

- A test is the process of feeding a program or part of a program selected input data
that allows to check the programs output against an expected result.

- A test: Calling an averaging function with the array [1,2,3] and expecting the output
[2].

- A test: Calling a format conversion script with a given input file, for which a correct
output file in the new format exists, and comparing the output against the existing
file.

- Not a test: Running a program with input data and guessing if the output looks
more or less correct.

- Is this a test? A computation produced an output a few months ago. The output
was stored and every time the program is changed the program is rerun with the
same input and the new output is compared against the original.

What is a test?

- A test is the process of feeding a program or part of a program selected input data
that allows to check the programs output against an expected result.

- A test: Calling an averaging function with the array [1,2,3] and expecting the output
[2].

- A test: Calling a format conversion script with a given input file, for which a correct
output file in the new format exists, and comparing the output against the existing
file.

- Not a test: Running a program with input data and guessing if the output looks
more or less correct.

- Is this a test? A computation produced an output a few months ago. The output
was stored and every time the program is changed the program is rerun with the
same input and the new output is compared against the original. Yes

What are different types of tests?

- Testing is often divided into two categories:
- Verification: Proof that you do what you intended this is topic today
- Validation: Proof that what you intended is the correct thing to do this is hard

- Example: A program that does not detect landslides based on satellite data, because it
was trained/coded in a wrong way fails in verification. A program that does not detect
landslides based on satellite data, because they are impossible to detect based on this
data fails in validation.

- What types of verification tests are there?
- Many more variants, but relevant for scientific applications:

- Manual / Exploratory tests
- Integration / Regression tests
- Unit tests
- Benchmarks / Method of Manufactured Solution (MMS)

Manual / Exploratory tests

- This is what most scientists think of when they are asked to test their code
- They may run their script, look at the figure, check if it looks reasonable
- Maybe run with different data sets or variations of parameters to make sure

the parameters work
- Problems:

Each run takes your valuable time!
Humans are bad at spotting small errors!

- Acceptable if:
- You are throwing together a one-off figure
- You are plotting a dataset without modifying it, and know the dataset is reliable

- Not acceptable if:
- You are planning to use the result in a publication or presentation
- Colleagues (incl your future self) will rely on your results for additional work

Integration / Regression tests

- Integration tests automate the manual testing procedure
- Idea: Run the manual test with defined input and defined output, and make

sure the program creates the expected output
- Example:

- Store a small artificial dataset in the data/ directory
- Run your software on it and store the (manually checked) output data in a tests/ directory
- Write a function ‘test()’ that runs the script on the input data and compares the result with the

previously stored output data
- Run this function automatically every time a commit is made

- These tests not only save you time, they also catch things you break
accidentally after they worked before (called ‘regressions’)

Do’s and Don’ts for Integration Tests

- Cover all important application cases, do not have a significant feature without
an integration test

- Use smaller versions of your full datasets to keep the test cases fast (<1 min
per test, ideally seconds)

- Do not write tests that test the same functionality (2 integration tests that test
different time series of the same structure are not useful), this concept is
called orthogonal testing

- Output images are hard to test this way. Make it easier by writing the data you
plot to a file as well

Unit tests

- Like an integration test, but instead of running the whole script, run the
smallest unit of your script possible (often one function at a time)

- Much easier to create, because you control input and output of the function
- Exercise:

- Assume you have a function that computes the running average of a time series
- What are input data examples you should test?

Unit tests

- Like an integration test, but instead of running the whole script, run the
smallest unit of your script possible (often one function at a time)

- Much easier to create, because you control input and output of the function
- Exercise:

- Assume you have a function that computes the running average of a time series stored in an
array. The function allows to select the size of the averaging window.

- What are input scenarios you should test?
- A time series of constant values
- A time series of a linearly increasing values (you can easily compute the running average)
- A time series with no values
- A time series with corrupted values
- A time series that is shorter than the averaging window

- Unit tests are extremely important, because they can cover your whole code
and run extremely fast

Do’s and Don’ts for Unit Tests

- Give unit tests expressive names (e.g. test_averaging_function_constant,
test_averaging_function_linear, test_averaging_function_empty, …)

- Use a testing framework like pytest, unittest (Python) or testthat (R) or
cmake/ctest, googletest, catch (C/C++), Fortran to test easy and fast

- Do not write tests for the same functionality (2 unit tests that test different time
series of the same structure are not useful)

- Do not write unit tests that depend on each other, they should be independent
(one should not use variables or files generated by another)

Benchmarks

- Benchmarks are defined applications of a whole program, which are relevant
for the application field and allow measuring the accuracy of different
algorithms.

- Benchmarks are expensive to create and require significant thought to
produce a relevant, yet tractable problem with well defined performance
metrics (how well did the program perform)

- Benchmarks are beyond the scope of this workshop, creating a new
benchmark or performing a number of benchmarks with a new code usually
warrants a new publication

Benchmark examples

- There are two subgroups of benchmarks:
- Code comparisons (sometimes called community benchmarks) compare the output of

several programs when applied to the same application and try to judge their relative accuracy
and speed based on the results.

- Manufactured solutions are application scenarios with known solutions, to which the
program output can be directly compared.

Community benchmark example

- Compare 4 codes for a given
application (surface
topography above a thermal
mantle anomaly)

- Other examples:
- SCEC community benchmark
- Geodynamo community

benchmark
- Mantle Convection community

benchmark

ASPECT Manual, based on Crameri et al., 2021

MMS example

- Construct an analytical solution to a
simple problem to measure accuracy
as difference between numerical
and analytical solution.

Gassmoeller et
al., 2020

MMS example

- Construct an analytical solution to a
simple problem to measure accuracy
as difference between numerical
and analytical solution.

Gassmoeller et
al., 2020

The Testing Pyramid

- How should you test?

Slow (minutes)

Medium (<1 min)

Fast (<1 s)

Manual tests / Benchmarks

Integration tests

Unit tests

Few

Some

Many

Test speed Number of tests Type of test Cost

Expensive

Moderate

Cheap

"Test Early, Test Often, Test Automatically"

The benefits of tests

- Catching bugs early is much cheaper and less embarrassing than having to
debug after results have been published

- Having a well tested software allows you to make changes with the certainty
of not breaking things

- “Refactoring” (improving the code quality without changing functionality) is
much much easier with tests:
“refactoring without tests isn’t refactoring, it is just moving shit around.”
Corey Haines (@coreyhaines), Dec 20, 2013, Twitter

An alternative approach: Test-driven development (TDD)

- A common approach to programming is to first write the code, then test if it
works

- However, over the last two decades a different approach has proven to be
more effective in commercial software development: Write the test first, then
write the code that satisfies this test

- This model is called Test-driven development

Test-driven development (TDD)

- Example: Write a function that computes the average of an array

1. Write a test that calls the (not yet existing function) with the array [0], you
expect the function to return [0]

a. Check that the test fails
b. Write the function and always return 0
c. Check that the test succeeds.

2. Write a second test that uses [1] as input and expects [1] as output
a. Check that the second test fails
b. Modify the function to pass both tests
c. Check that both tests succeed

3. Write a test that uses [0,1] as input and expects [0.5] as output
a. Check that the third test fails
b. ...

Test-driven development (TDD)

- TDD has been shown to produce better code in less time than traditional
software development, because:

- You think more deeply about what you expect your program to do
- You automatically create tests for all functionality in your program (no more forgotten tests)
- You structure your program in a way that is easier to understand

- 3 Rules of test-driven development (Robert C Martin, The Clean Coder):
1. You are not allowed to write any production code until you have written a

failing unit test for it.
2. You are not allowed to write more of a unit test than is sufficient to fail - and

not compiling is failing.
3. You are not allowed to write more production code than is sufficient to pass

the currently failing unit test.

Summary

- Test Early, Test Often, Test Automatically!
- Tests are critical to proof that your program does what you think it does!
- Whether you embrace TDD or classical code-first test-later strategies, make

sure you have tests in place that tell you your program is not approximately
correct, apparently correct, or almost correct, but that it is correct for defined
test cases!

- Think about what you expect your program to do before running it and
quantitatively test the output. If something looks funny or unexpected, it is
likely a bug!

Tests in Action

- As example the software ASPECT has a test suite of 1736 unit tests (using
catch), and 1044 integration tests (using ctest)

- These tests are executed for every pull request using something that is called
continuous integration (next topic)

- Let’s take a look: https://github.com/geodynamics/aspect/tree/main/tests

Continuous integration and automated testing

“Continuous Integration (CI) is a development practice where developers integrate code into a shared
repository frequently, preferably several times a day. Each integration can then be verified by an
automated build and automated tests. While automated testing is not strictly part of CI it is typically
implied.” https://www.cloudbees.com/continuous-delivery/continuous-integration

- Continuous integration is a practice first introduced in 1991, nowadays employed for nearly every
software project

Continuous integration and automated testing

- Many aspects of CI are mostly relevant for large projects, but for us it means:
- Make small, incremental changes to your software, then test and commit
- If you collaborate with someone else, make sure you frequently merge all of your changes
- Make sure to always keep your software in a working state, do not commit broken functionality
- Make sure to have automated tests on GitHub to detect accidental mistakes
- If a test is broken fix it before working on something else
- Test your tests!

- Continuous integration tools make CI and automated testing easier, examples are GitHub
Actions/Workflows (https://github.com/features/actions), GitLab Pipelines
(https://docs.gitlab.com/ee/ci/pipelines/), Jenkins (https://www.jenkins.io/), Azure pipelines
(https://azure.microsoft.com/en-us/products/devops/pipelines)

- We will discuss GitHub Actions for this workshop

What are GitHub Actions?

- GitHub Actions are workflows that GitHub will execute in your repository,
whenever a certain event happens

- It will use cloud resources for these commands, e.g. a virtual machine in
Microsoft’s Azure cloud

- Events could be:
- Every 15 minutes
- Every time someone pushes to your repository on a certain branch
- Every time someone opens a pull request (PR)

- Workflows could be:
- Compile your software
- Run all of your tests
- Build your documentation
- Update a webpage

What are GitHub Actions?

- GitHub actions are controlled by configuration files inside the folder:
.github/workflows

- If a file of the correct type is inside this folder GitHub will try to execute it
- Workflow files need to be in a special format, called yaml (Yet Another Markup

Language), an example is here:

https://github.com/geodynamics/Rayleigh/blob/main/.github/workflows/main.yml

- Example results are here
- Because these actions will happen on a virtual machine, we need to make sure all

dependencies are installed correctly. This can be done using containers, or
dependency management systems like conda or cmake (next topic).

5 min break. Questions about tests?

Reproducibility

Categories:

1. Installation + system dependencies
2. Software version
3. User input + data

Reproducibility

JOSS:
Is there a clearly-stated list of dependencies? Ideally these should be handled with an
automated package management solution.

CIG Best
practices

Minimum Standard Target

Portability,
configuration,
and building

(a) Codes builds
on Unix-like
machines with
free tools. (b)
Portable build
system.

Minimum + (a) Dependency
checking. (b) Automation and
portability of configuration
and building. (c) Each
simulation outputs all
configuration and build
options for reproducibility.

Standard + (a) Selection of
compilers, optimization, build flags
during configuration without
modifying files under version
control. (b) Multiple builds using
same source. (c) Allows installation
to a central location.

Installation + system dependencies

● Software often depends on system libraries or other projects
● The versions of these dependencies can vary, affecting your software results.

Bugs can be specific to compilers, library versions, operating systems
● Managing dependencies can be split into two tasks:

○ Documenting supported dependency versions
○ Documenting dependency versions that were used for a specific installation

Documenting supported dependency versions

● Easiest, but brittle: Document in README.md or installation instructions
○ Can be outdated, incomplete, overlooked

● Better: Document in code, e.g.:
● Inside a CMakeLists.txt if using cmake● Inside an environment.yml file for Python projects

Documenting supported dependency versions

● Easiest, but brittle: Document in README.md or installation instructions
● Better: Document in code
● Even if you do not install the dependencies, always check installed

dependency versions, e.g. in CMakeLists.txt:

Documenting dependency versions in use

Documenting dependency versions in use

● Make version of software and dependencies available at run-time
● Use a single source of truth for your version number! (e.g. a VERSION file),

do not put your version number in every file! Makes releases easier.
● For Python: Store version

number in member variable,
E.g. following PEP8:

Documenting dependency versions in use

● Make version of software and dependencies available at run-time
● For compiled languages: Make use of CMake configuration options:

include/aspect/revision.h.in:

CMakeLists.txt:

Documenting dependency versions

● Great help for reproducibility and publishing
● Output versions during software run, e.g. ASPECT header:

● Output on screen and write to a file

Document user input + data

● Store the user input of a software run in a file
● If your code is controlled by a user input file: Make a copy of the file, place it

in the output directory
● This data is important to keep and publish (e.g. as data package on Zenodo)

to fulfil data availability policies of publishers
● It is also useful for you, once you finished your 50 model study, you still have

the configuration for each model

● CIG has draft model publishing guidelines here: https://tinyurl.com/cig-publish

Containers

● Software containers are a way to isolate a software environment and all its
dependencies from the host system

● You can ship containers around and run them (almost) independent of the
hardware they are using

● Creating a container of your software will allow reproducibility of a workflow
for a long time

● A full tutorial on containers:
https://carpentries-incubator.github.io/docker-introduction/index.html

Exercise: Testing, Documentation, Reproducibility

● Questions?

● How do you test your software? How do you document? How can you
increase reproducibility?

● Ask questions so that everyone can learn from them
● Link to these slides: http://bit.ly/2023-cig-joss
● We will continue at 1 pm Pacific, 4 pm East Coast with Session 3

(Software Publication)

Session 3 - Navigating Publication in Software Journals

● Why do software journals exists?
● Which software journals exist?
● Why the Journal of Open Source Software (JOSS)?
● How does a submission to JOSS proceed?
● Discussion time

Software journals - Why?

● Software is a research product, just like scientific results
● Traditional publications are not focussed on the software, they are focussed

on the scientific result, the "implementation" is typically not reviewed
● Results depend on software, so there should be a review
● A mechanism for credit
● A mechanism for reproducibility

Software journals - Which one?

● A number of old+new journals accept software publications:
○ JOSS: The Journal of open-source software
○ GMD: Geoscientific Model Development
○ AGU journals: Technical Report:Methods
○ SoftwareX
○ For more see this list by the Software Sustainability Institute:

https://www.software.ac.uk/which-journals-should-i-publish-my-software
● We will mainly discuss a JOSS publication, but will briefly introduce the other

mentioned journals

GMD (EGU, Copernicus, IF: 5.1)

Geoscientific Model Development (GMD) is a not-for-profit international scientific journal dedicated to the
publication and public discussion of the description, development, and evaluation of numerical models of
the Earth system and its components. The following manuscript types can be considered for
peer-reviewed publication:

● geoscientific model descriptions, from statistical models to box models to GCMs;
● development and technical papers, describing developments such as new parameterizations or

technical aspects of running models such as the reproducibility of results;
● new methods for assessment of models, including work on developing new metrics for assessing

model performance and novel ways of comparing model results with observational data;
● papers describing new standard experiments for assessing model performance or novel ways of

comparing model results with observational data;
● model experiment descriptions, including experimental details and project protocols;
● full evaluations of previously published models.

Technical Reports (AGU e.g. G3, IF: variable)

"Technical reports: Methods" describe novel analytical or experimental methods
that enable new science, as well as other technical advances, including computer
programs and instrumentation. These papers are limited to 13 publication units
(1PU = 500 words / 1 figure) and will typically include at least one illustrative
example application. Please contact journal staff to determine if that journal offers
this paper type.

● Domain-relevant journal
● Reviewers may not be software developers
● Software itself may not be reviewed, only description of methods

SoftwareX (Elsevier, IF: 3.4)

SoftwareX aims to acknowledge the impact of software on today's research practice, and on new scientific discoveries in almost all
research domains. SoftwareX also aims to stress the importance of the software developers who are, in part, responsible for this
impact.

To this end, SoftwareX aims to support publication of research software in such a way that:

● The software is given a stamp of scientific relevance, and provided with a peer-reviewed recognition of scientific impact;
● The software developers are given the credits they deserve;
● The software is citable, allowing traditional metrics of scientific excellence to apply;
● The academic career paths of software developers are supported rather than hindered;
● The software is publicly available for inspection, validation, and re-use.

Journal of Open-Source Software

"The Journal of Open Source Software (JOSS) is an academic journal (ISSN 2475-9066) with a
formal peer review process that is designed to improve the quality of the software submitted.
Upon acceptance into JOSS, a Crossref DOI is minted and we list your paper on the JOSS
website."

"If you’ve already developed a fully featured research code, released it under an OSI-approved
license, and written good documentation and tests, then we expect that it should take perhaps an
hour or two to prepare and submit your paper to JOSS."

● We will use the rest of this workshop to work through the JOSS submission process
● Implementing all the best practices makes JOSS submission easy

Software journals brief comparison

JOSS GMD AGU SoftwareX

Software best practices

Open source / free to use

Domain relevance

Methods

Open review

Open access (article)

Free to publish

yes

maybe

no

no
information

JOSS Submission requirements

1. The software must be open source as per the OSI definition.
2. The software must be hosted at a location where users can open issues and propose code changes without

manual approval of (or payment for) accounts.
3. The software must have an obvious research application.
4. You must be a major contributor to the software you are submitting, and have a GitHub account to

participate in the review process.
5. Your paper must not focus on new research results accomplished with the software.
6. Your paper (paper.md and BibTeX files, plus any figures) must be hosted in a Git-based repository

together with your software (although they may be in a short-lived branch which is never merged with the
default).

JOSS paper contents

A JOSS paper is a short article

1. A list of the authors of the software and their affiliations, using the correct format (see the example below).
2. A summary describing the high-level functionality and purpose of the software for a diverse, non-specialist audience.
3. A Statement of need section that clearly illustrates the research purpose of the software and places it in the context of related

work.
4. A list of key references, including to other software addressing related needs. Note that the references should include full

names of venues, e.g., journals and conferences, not abbreviations only understood in the context of a specific discipline.
5. Mention (if applicable) a representative set of past or ongoing research projects using the software and recent scholarly

publications enabled by it.
6. Acknowledgement of any financial support.

Submission template

JOSS provides a template for a software paper here:
https://joss.readthedocs.io/en/latest/submitting.html#example-paper-and-bibliography

Other examples for Geoscientific JOSS papers are:

● https://joss.theoj.org/papers/10.21105/joss.05389
● https://joss.theoj.org/papers/10.21105/joss.01797
● https://joss.theoj.org/papers/10.21105/joss.02043
● https://joss.theoj.org/papers/10.21105/joss.05073

Checking that your paper compiles

JOSS offers two ways to check that your paper has the right structure:

● Using a GitHub action
● Using a Docker container

You can use either one.

JOSS submission workflow

Submitting your paper
Submission is as simple as:

● Filling in the short submission form
● Waiting for the managing editor to start a pre-review issue over in the JOSS reviews repository:

https://github.com/openjournals/joss-reviews

No submission fees
There are no fees for submitting or publishing in JOSS. You can read more about our cost and sustainability model.

Preprint Policy
Authors are welcome to submit their papers to a preprint server (arXiv, bioRxiv, SocArXiv, PsyArXiv etc.) at any point before, during, or after the
submission and review process.

Review process

The review process happens in a github issue in the following repository:
https://github.com/openjournals/joss-reviews. The review process is public.

The review process is initiated by the editor, and performed by independent
reviewers.

An EditorialBot supports and automates common operations.

Let's walk through an example review process:
https://github.com/openjournals/joss-reviews/issues/5073

Questions about any part of the workshop?

- Ask your questions now or later in the CIG forum:
https://community.geodynamics.org/c/computational-science/17

- Let us know how we did and if you will participate
in person for part II in October:
https://www.menti.com/al2afk43embn
or menti.com, code: 3277 0881

- Consider contributing your software to CIG or JOSS
to receive more publicity and credit.

- The CIG Seismic Cycles Working Group is planning a special issue in JOSS.
Let us know if you are interested.

Thank you for your participation

And a big thank you to the National Science Foundation for supporting our work.

 NSF - 21490126

