
 Rayleigh Hackathon 2023 Report
 Logistics 1
 Introduction 2
 Land Acknowledgement 3
 Timeline 4
 Participants and areas of interest 4
 Resources 6

 Git Tutorial: 6
 Report on projects the participants worked on 7

 Fix Rayleigh's automatic docker image generation 7
 Rene Gassmoeller 7

 Custom reference framework discussion 7
 Loren 7

 Pseudo-Incompressible Approximation 8
 Brad 8

 Sparse Methods and Time-stepping 8
 Kyle Augustson 8

 GPU port 8
 Philipp Edelmann 8

 Finite-Difference method and MHD in Rayleigh 9
 Rathish Previn Ratnasingam 9

 Update Rayleigh docker image to work with Singularity/Apptainer and Apple Silicon 9
 Rene Gassmoeller 9

 Implement Topography Boundary Conditions to Rayleigh 9
 Tobias Oliver 9

 Dual Buoyancy System Benchmark against Breuer et al. (2010) 10
 Chi Yan 10

 Online tool on geodynamics.org 11
 Rene Gassmoeller 11

 Added Jupyter notebook tutorial for spectral_utils.py 12
 Catherine Blume 12

 Added new general non-dimensional anelastic reference_type = 5 13
 Loren Matilsky 13

 2023 Statistics about Rayleigh’s growth during the hackathon 14

 Logistics
 The hackathon occurs in person in Golden, Colorado. Participants that have to self-isolate due
 to Covid will use the following Zoom Link:

 https://ufl.zoom.us/j/94646279339?pwd=SzhoUlFwSUNxWmZOTFRZMGtnTGVIZz09

 Slack:
 https://join.slack.com/t/rayleighworkspace/shared_invite/zt-1fy7the9g-I80zezN~0bf64mFp2vKRi
 w

 Logistics spreadsheet:

 Dataset Listing:
 https://osf.io/j275z/wiki/Dataset%20Listing/

 Link to last year’s report:
 https://geodynamics.org/resources/1929/download/Rayleigh_Hackathon_2021_Log.pdf

 A Miro Board for Documentation Flowcharting/Brainstorming:
 https://app.conceptboard.com/board/ksgb-gmck-7011-phmc-2ysh

 Notes on Documentation Discussion
 https://docs.google.com/document/d/17TthEITd0y4WZw0uriRj96YpolaKP6u-Cu6xi30y_gQ/edit?
 usp=sharing

 Documentation Outline
 https://docs.google.com/document/d/1qxnbEpvC8UMeh98dMDcbBtHp8ylC9YM4RXpJREB1Dm
 s/edit?usp=sharing

 1

https://ufl.zoom.us/j/94646279339?pwd=SzhoUlFwSUNxWmZOTFRZMGtnTGVIZz09
https://join.slack.com/t/rayleighworkspace/shared_invite/zt-1fy7the9g-I80zezN~0bf64mFp2vKRiw
https://join.slack.com/t/rayleighworkspace/shared_invite/zt-1fy7the9g-I80zezN~0bf64mFp2vKRiw
https://osf.io/j275z/wiki/Dataset%20Listing/
https://geodynamics.org/resources/1929/download/Rayleigh_Hackathon_2021_Log.pdf
https://app.conceptboard.com/board/ksgb-gmck-7011-phmc-2ysh
https://docs.google.com/document/d/17TthEITd0y4WZw0uriRj96YpolaKP6u-Cu6xi30y_gQ/edit?usp=sharing
https://docs.google.com/document/d/17TthEITd0y4WZw0uriRj96YpolaKP6u-Cu6xi30y_gQ/edit?usp=sharing
https://docs.google.com/document/d/1qxnbEpvC8UMeh98dMDcbBtHp8ylC9YM4RXpJREB1Dms/edit?usp=sharing
https://docs.google.com/document/d/1qxnbEpvC8UMeh98dMDcbBtHp8ylC9YM4RXpJREB1Dms/edit?usp=sharing

 Introduction
 For the 2023 Rayleigh hackathon, 13 user-developers of Rayleigh worked in an in-person
 hackathon over a 5-day period in Golden, CO on the campus of the Colorado School of Mines.
 Attendees included a mix of new and veteran users, with career stages spanning from early to
 late career. Experts from geophysics, solar/stellar physics, and planetary atmospheres were all
 represented at this year’s workshop. Several improvements to the source code, documentation,
 and supporting analysis routines were completed and/or initiated during this year’s week-long
 workshop.

 From the standpoint of the source code, two major efforts were undertaken and largely
 completed this year. The first of these involved the re-implementation of a radial finite-difference
 scheme in Rayleigh. This functionality has existed for some time, but was disabled in favor of
 the more accurate Chebyshev approach used for the radial discretization. The gridpoint
 locations used in the Chebyshev scheme are, however, overly constraining for some problems
 that have interior boundaries requiring fine resolution locally. This can be overcome through the
 use of a finite-difference scheme appropriate for non-uniform grids. Such a scheme, with
 4th-order spatial accuracy, is now fully implemented in Rayleigh and has been brought
 up-to-date with the rest of the code base.

 The second major effort was the development and testing of coupled boundary conditions for
 the multi-scalar field mode that was implemented in the 2022 hackathon. This new feature will
 allow, among other things, for Rayleigh to better represent the compositional convection and
 subsequent plating of iron onto the solid inner core. Both the 4th-order finite-difference scheme
 and the coupled boundary conditions are now fully implemented in Rayleigh. Appropriate
 documentation is now being finalized in preparation for the fall 2023 release.

 Additionally, two projects of particular note were begun with an eye toward future applications of
 the Rayleigh software. The first of these was to begin implementing a new mode in Rayleigh
 that enables the use of the so-called pseudo-incompressible approximation as an alternative to
 the Boussinesq and anelastic approximations already available in Rayleigh. The
 pseudo-incompressible approximation similarly assumes low-Mach number flows, but places
 fewer restrictions on the assumed size of thermal perturbations about the background state –
 making it particularly suitable for the study of convective overshoot. The second new project
 involves the implementation of dynamic (in time) boundary conditions. This effort was motivated
 by the desire to incorporate a topographical perturbation to the otherwise spherical boundary.
 The framework developed for this effort also has broader potential, such as the coupling of a
 time-varying mantle-convection simulation to Rayleigh’s upper boundary. Work on these two
 projects will continue throughout the coming year and will hopefully be finalized at next year’s
 Hackathon.

 2

 In addition to source-code modifications, a number of modifications to the broader Rayleigh
 ecosystem were also undertaken, including updates to Rayleigh’s containerization, the addition
 of new tutorial notebooks and a new benchmark test for the multiple-scalar-field mode now in
 Rayleigh. All new additions to the codebase resulting from this workshop will be wrapped into
 the Rayleigh 1.2 release later this fall. Below is the timeline and a log of the individual
 contributions. Many of these contributions are discussed in greater detail following the table of
 participants’ interests.

 Land Acknowledgement
 We acknowledge the indigenous people and land in which we are gathered. Golden, Colorado
 has been home to the Núu-agha-tʉvʉ-pʉ̱ (Ute) and Tséstho'e (Cheyenne) peoples who have
 provided stewardship of this land over many centuries. We are honored and grateful to be here
 today on their traditional lands.

 3

 Timeline
 Day Scheduled items

 Sunday 06/11 Arrival, Introductions

 Monday, 06/12 9 am: Morning rounds
 10:30 am: Git + pull request tutorial

 Tuesday, 06/13 9 am: VS code tutorial
 9:30 am: Morning rounds
 2:30 pm: How to publish (Lorraine)

 Wednesday, 06/14 9:30 am: Morning rounds
 10:00 am: SPH tool presentation (Catherine)

 Thursday, 06/15 9 am: Morning rounds

 Friday, 06/16 9 am: Morning rounds

 Saturday, 05/17 Departure

 Participants and areas of interest

 Name, affiliation, email Goals and interests for this hackathon

 Rene Gassmoeller,
 University of Florida
 rene.gassmoeller@mailbox.org

 1. Help others with their goals
 2. Review pull requests
 3. Create singularity container for TACC systems
 4. Create an online hubzero tool?
 5. Maybe: run some models

 Lorraine Hwang
 UC Davis
 ljhwang@ucdavis.edu

 1. Logistics

 Nick Featherstone
 Southwest Research Institute
 nicholas.featherstone@colorado.edu

 1. Introducing people to Rayleigh’s design
 2. Helping others

 Cian Wilson 1. Learn how to approach coupled bcs

 4

 Carnegie Science
 cwilson@carnegiescience.edu

 2. Scalar fields with custom reference states
 3. Standardize I/O for generic input

 Rathish Previn Ratnasingam
 Newcastle University, UK
 rathish.ratnasingam@ncl.ac.uk

 1. Introduce FD formulation for MHD, anelastic
 calculations

 Philipp Edelmann
 Los Alamos National Laboratory
 pedelmann@lanl.gov

 1. GPU port based on Ryan's work
 2. integrate finite differences with Rathish
 3. get Rayleigh into Spack mainline

 Bradley Hindman
 University of Colorado
 hindman@colorado.edu

 1. Pseudo-incompressible formulation for the
 continuity equation

 Catherine Blume
 University of Colorado Boulder
 catherine.blume@colorado.edu

 1. Documentation and examples using
 spectral_utils.py (spherical harmonic
 transforms, Chebyshev transformers, d/dr,
 d/dtheta, d/dphi in spectral and physical
 space)

 Kyle Augustson
 Northwestern University
 kyle.augustson@northwestern.edu

 1. Begin implementation of sparse matrix
 methods for the implicit portion of the solver.

 2. Take a look at alternative time evolution
 methods (IMEX).

 Peter Driscoll
 Carnegie Institution for Science
 pdriscoll@carnegiescience.edu

 1. Derive equations that describe coupled
 boundary conditions for multiple scalar fields.

 2. Run Rayleigh with a custom reference state
 for dimensionless anelastic.

 Loren Matilsky
 UC Santa Cruz
 loren.matilsky@gmail.com

 1. Discuss + modify custom reference framework
 (reference_type = 4)

 2. Finish non-dimensional anelastic
 implementation (reference_type = 5)

 3. Possibly: explore even-Chebyshev expansion
 to include r=0 coordinate singularity.

 Tobias Oliver
 CU Boulder
 tobias.oliver@colorado.edu

 1. Implement Topography boundary conditions
 into Rayleigh (testing)

 Chi Yan
 cyan@carnegiescience.edu

 1. Provide input namelists for the
 thermal-chemical dual convection benchmark
 to Breuer_2010_GJI.

 2. Implement a stable layer in Boussinesq
 approximation using the custom reference (4).

 5

 Resources

 Git Tutorial:
 - The slides from an earlier presentation:

 https://www.dropbox.com/s/6xvb4pyq7mefxp7/Git-Github-introduction.pdf?dl=0
 - Git commands cheat sheet: https://education.github.com/git-cheat-sheet-education.pdf
 - Github workflow: https://guides.github.com/introduction/flow/
 - Git tutorial: https://swcarpentry.github.io/git-novice/

 1. Explain and set up Git:
 a. https://swcarpentry.github.io/git-novice/01-basics.html
 b. https://swcarpentry.github.io/git-novice/02-setup.html

 2. Explain and setup Visual Studio Code:
 a. https://code.visualstudio.com/download

 3. Explain Github Workflow:
 a. https://guides.github.com/introduction/flow/
 b. Ensure forked repositories
 c. Ensure proper remotes

 4. Walkthrough
 a. Create Branch

 i. ‘git checkout main
 ii. ‘git pull upstream main
 iii. ‘git checkout -b branch_name'

 b. Create commit
 i. ‘git add FILE’
 ii. ‘git commit -m ‘A short message describing the change’

 c. Push and open PR
 i. ‘git push origin branch_name
 ii. Open PR on github (CTRL-Click on shown link)

 d. Wait for review
 e. Address review (repeat steps b,c,d)
 f. Success!

 Now repeat the steps in 3. on your own.

 6

https://www.dropbox.com/s/6xvb4pyq7mefxp7/Git-Github-introduction.pdf?dl=0
https://education.github.com/git-cheat-sheet-education.pdf
https://guides.github.com/introduction/flow/
https://swcarpentry.github.io/git-novice/
https://swcarpentry.github.io/git-novice/01-basics.html
https://swcarpentry.github.io/git-novice/02-setup.html
https://code.visualstudio.com/download
https://guides.github.com/introduction/flow/

 Report on projects the participants worked on

 Fix Rayleigh's automatic docker image generation
 Rene Gassmoeller

 Rayleigh's docker image was supposed to be automatically rebuilt after every change to the
 master branch, but this workflow was broken by the name change of the main branch at the last
 hackathon. This is fixed now.

 Custom reference framework discussion
 Loren

 1. To recap, there are four reference types that can specify the various c’s and f’s in the
 PDEs that Rayleigh solves. Reference_type = 1,2,3 have everything specified through
 keywords in main_input (these need no modification). Reference_type = 4 (custom
 reference) has by default everything specified through an input binary file.

 2. Currently people are allowed some mixing and matching between reference_type = 4
 and (e.g.,) nu_type = 1, nu_top = 1.0d12. This has caused confusion on

 a. What happens when conflicting specifications are made (e.g., nu_top = 1.0d012,
 ra_constants(3) = 5.3d12, something totally difference in binary file)

 b. What we want to happen for conflicting specifications.
 3. We agreed on a fairly stringent modification that would basically force (for

 reference_type = 4) the user to specify everything from the input binary file.
 a. The only place the user will be able to override the binary file is through the

 “override_constants” framework (i.e., only constants, not functions, can be
 modified by the user after the fact).

 b. The user will not (no longer) be able to override the binary file using special
 keywords (e.g., nu_type, nu_top, Ekman_Number, Luminosity) associated with
 other reference types. This means Loren and Catherine’s main_input files will
 break slightly :) But hopefully nobody else’s!

 c. We need to decide on what to do with heating_type—I think we said it would be
 set to 10 (say) so it is always used by the code. If the user wants no heating, they
 need to explicitly set c_10*f_6 to zero via the binary file.

 4. The “augment_reference” stuff (for reference_types = 1, 2, 3) we should also discuss at
 some point. I believe only gravity, heating, and f_14 (e.g., dS/dr, stable stratification) may
 be modified currently. Maybe we want to make it so anything can be modified, or at least
 the diffusivities can be?

 5. To do:
 a. Modify code to adhere with a and b hierarchy (plus what we decide for c).
 b. Update documentation to reflect how this all works.

 7

 c. Make sure the code EXITs and throws an error if user specifies reference_type =
 4 that is unspecified. Possibly throw warning that “user can’t use nu_type, nu_top
 with reference_type = 4 anymore” or something.

 d. Make sure notebooks are up-to-date and show each use case.

 Pseudo-Incompressible Approximation
 Brad

 1. Derived the evolution equations for the stream functions for the pseudo-incompressible
 equation set. (pressure and buoyancy finished, advection and viscosity still being
 worked out).

 Sparse Methods and Time-stepping
 Kyle Augustson

 Decided on a representational basis and test basis for the operators and non-constant
 coefficients for the radial ODEs solved for each ell and m pair in the implicit portion of the code.
 Examined the code to see how to go about using Kronecker products to build the problem
 matrices within the constraints of the current code base, trying to minimize overall structural
 changes. Also I wrote a Mathematica workbook to compute the expansion of the stress tensor
 for the pseudo-incompressible equations as expressed on the new stream functions that use the
 potential density. I have written a jupyter notebook that uses the sparse Ultraspherical
 polynomial representation to construct test problems before beginning their implementation into
 Rayleigh to construct the implicit matrices. The workbook and notebook can be found here:
 https://github.com/kyle-augustson/Playing-with-Polynomials (it’s private for now, but let me
 know if you want access). The linear diffusion problem can also handle non-constant
 coefficients, which necessitated the implementation of a basis product transform akin to that of
 the Clebsch-Gordon coefficients but for Ultraspherical polynomials. I have written a separate
 notebook that deals with nonlinear problems (the Newell–Whitehead-Segel reaction-diffusion
 equation) to test the scheme. Also available on github. It works using the MCNAB2 scheme (see
 Ascher 1995 for details).

 GPU port
 Philipp Edelmann

 Submitted a PR to get Rayleigh into Spack's main repo.
 Added support for the Podman container runtime in this PR .

 Got Ryan's work to build and run on Nvidia V100 GPUs.

 Roadmap for Nvidia GPUs:

 8

https://github.com/kyle-augustson/Playing-with-Polynomials
https://github.com/spack/spack/pull/38338
https://github.com/geodynamics/Rayleigh/pull/468
https://github.com/orvedahl/GPU-Rayleigh

 Rayleigh cannot be compiled with nvfortran because it lacks support for quad-precision
 numbers . This is used in Math_Layer/Legendre_Polynomials.F90. Just compiling this file with
 gfortran is not an option due to the incompatible .mod file formats.

 gfortran has support for OpenACC and can generate code to offload to Nvidia and AMD GPUs. I
 have tested this successfully, but it would involve building our own gfortran on every cluster we
 use with Nvidia GPUs.

 Opened an issue with all the findings of this week to discuss the roadmap.

 Finite-Difference method and MHD in Rayleigh
 Rathish Previn Ratnasingam

 Updated Rayleigh’s FD formulation and its compatibility with anelastic, MHD benchmarks. We
 started out with figuring out why the Jones MHD benchmark was failing. Two problems were
 found; the uniform radial grid was set up incorrectly and the L conservation at the boundary only
 applied for chebyshev grids. The fixes made were first, use a uniform dr grid when no dr is set
 up in the main_input file and second, set the weights for L integration to FD weights. All the
 benchmarks are now being tested.

 Update Rayleigh docker image to work with Singularity/Apptainer
 and Apple Silicon
 Rene Gassmoeller

 Rayleigh's docker image was updated to be compatible with the Singularity/Apptainer container
 system that is used on many HPC computing resources. To use cluster specific networks the
 image still needs to be adapted, but the base image should work on any cluster as long as only
 a single node is used. This change also includes removing outdated docker images for no
 longer supported operating systems. This change also includes building the docker image for
 the ARM64 CPU architecture, which greatly speeds up the execution of the container for Apple
 M1 and M2 processors.

 Implement Topography Boundary Conditions to Rayleigh
 Tobias Oliver

 Want to incorporate capability to handle bc’s that deviate from a spherical surface. The
 proposed method is to approximate a bc of (say) T(r = 1 + h(\theta,\phi)) = 0 as T(r=1) + h
 dT/dr|_1 = 0. This requires a non-zero RHS for the b.c. at T(r=1)
 Method has been implemented but so far seems unstable, and is in testing. Note that this
 method couples the modes and thus has to be treated with the non-linear terms.

 9

https://forums.developer.nvidia.com/t/program-does-not-compile-with-real-16/135808
https://forums.developer.nvidia.com/t/program-does-not-compile-with-real-16/135808
https://github.com/geodynamics/Rayleigh/issues/475

 The routines implemented can be extended to dynamic boundary conditions. Dynamic bc’s are
 probably easier from a stability standpoint and could be included in the implicit solve rather than
 treating as a non-linear term, but the current implementation will evaluate RHS of bc at previous
 timestep.

 Dual Buoyancy System Benchmark against Breuer et al. (2010)
 Chi Yan

 1. In a system of separate thermal (T) and compositional (c) buoyancy sources, we need a
 definition of Rayleigh # that is independent of thermal or compositional diffusivities (). κ

 𝑇
, κ

 𝐶

 Therefore, we use the following Ra # definition that is written as:

 for thermal Ra # &, for compositional Ra # 𝑅𝑎
 𝑣𝑖𝑠
 𝑇 =

 𝑔
 0
 α∆ 𝑇 𝑑 3

ν 2 𝑅𝑎
 𝑣𝑖𝑠
 𝐶 =

 𝑔
 0
 α∆ 𝐶 𝑑 3

ν 2

 Which can be related to conventional Ra # as:

 & 𝑅𝑎 𝑇 = 𝑃𝑟 𝑇 • 𝑅𝑎
 𝑣𝑖𝑠
 𝑇 𝑅𝑎 𝐶 = 𝑃𝑟 𝐶 • 𝑅𝑎

 𝑣𝑖𝑠
 𝐶

 Where & are the thermal and compositional Prandtl numbers. 𝑃𝑟 𝑇 𝑃𝑟 𝐶

 Through varying thermal/chemical buoyancy contributions in varying test cases, the total Ra # is
 kept the same. Let be the thermal contribution (, then: δ δ∈ [0 , 1])

 𝑅𝑎
 𝑣𝑖𝑠
 𝑡𝑜𝑡 = δ 𝑅𝑎

 𝑣𝑖𝑠

 𝑇
+ 1 − δ() 𝑅𝑎

 𝑣𝑖𝑠

 𝐶

= δ 𝑃𝑟 𝑇 − 1
 𝑅𝑎 𝑇 + (1 − δ) 𝑃𝑟 𝐶 − 1

 𝑅𝑎 𝐶

 Knowing and , one can get (what we need for input Ra parameters) 𝑅𝑎
 𝑣𝑖𝑠
 𝑡𝑜𝑡 δ

 & 𝑅𝑎 𝑇 = δ 𝑃𝑟 𝑇 𝑅𝑎
 𝑣𝑖𝑠
 𝑡𝑜𝑡 𝑅𝑎 𝐶 = (1 − δ) 𝑃𝑟 𝐶 𝑅𝑎

 𝑣𝑖𝑠
 𝑡𝑜𝑡

 Case 0 Benchmark in Breuer_2010_GJI: 𝑅𝑎
 𝑣𝑖𝑠
 𝑡𝑜𝑡 = 2× 10 5

δ 0 80 100

 𝑅𝑎 𝑇 0 4.8E4 0

 𝑅𝑎 𝐶 6E5 1.2E5 6E4

 Please refer to Table 1 in Breuer_et_al (2010) to compare the diagnostic parameters.

 10

 Comparison of Rayleigh (lines) of the 80T-20C case (middle) with MagIC (circles)

 Snapshots of the equatorial slices of the thermal (left) and compositional (right) profile.
 —--

 2. stably stratified layer (SSL) implementation in the Boussinesq system
 The SSL is built through the background temperature gradient using custom_reference (4)
 profile. The description of the stable layer is done through the custom function f14 (refer to
 documentation), other functions and constants are implemented accordingly through
 Boussinesq approximation. Two types of stable layer are provided, one using step function, and
 the other using two tanh functions. A preliminary set of tests have been performed, such as
 minimal radial velocities in the stable layer region should be expected.

 Online tool on geodynamics.org
 Rene Gassmoeller

 Added an online executable Jupyter notebook on the CIG website (geodynamics.org) that
 includes output from a small example model computed by Rayleigh. The notebook teaches how
 to analyze and visualize Rayleigh output.

 11

 Snapshot of the executable tool "Rayleigh Jupyter Notebooks" on geodynamics.org.

 Added Jupyter notebook tutorial for spectral_utils.py
 Catherine Blume

 Spectral_utils.py in the post-processing directory provides tools to perform spherical harmonic,
 Legendre, Fourier, and Chebyshev transforms, along with radial and angular derivatives in both
 physical and spectral space. A tutorial jupyter notebook spectral_utils_tutorial.ipynb has now
 been added that provides examples using this tool. Because this makes converting between
 Shell Spectra and Shell Slices easy, the user will only need to output Shell Spectra, saving disk
 space. This may also reduce the necessity of outputting derivatives.

 12

 Added new general non-dimensional anelastic reference_type = 5
 Loren Matilsky

 New reference_type = 5 allows user to specify a generalized non-dimensional anelastic
 reference state and non-dimensional control parameters.

 This differs from reference_type = 3 by allowing for stable and unstable polytropes (user can
 now choose specific_heat_ratio and polytropic index poly_n separately), as well as several
 choices for non-dimensionalization:

 1. User can choose to non-dimensionalize the polytrope at the inner boundary, outer
 boundary, or by volume-averages.

 2. User can input arbitrary length-scale for non-dimensionalization (default is shell-depth)
 3. Currently only the viscous diffusion time is used for the time scale, but the framework is

 set up so that other choices (e.g., 1/(2Omega_0)) can be easily implemented in the
 future simply by rescaling the appropriate constants by ratios of physical time-scales.

 13

 2023 Statistics about Rayleigh’s growth during the
 hackathon
 The following contains a number of statistics about how much Rayleigh has grown during the
 hackathon (between Jun 11 2023, commit 1b99187 and Jun 29 2023, commit d8af7a0 to allow
 for late merges):

 ● Number of source files in Rayleigh before/after: 166 -> 171 +5
 ● Lines of code in Rayleigh before/after: 67716 -> 72398 +4682
 ● Number of merged pull requests before/after: 406 -> 424 +18
 ● Commits in github before/after: 1242 -> 1309 +67
 ● Number of tests before/after: 6 -> 6 +0

 Statistics from 2022:
 ● Number of source files in Rayleigh before/after: 160 -> 163 +2
 ● Lines of code in Rayleigh before/after: 65195 -> 68465 +3270
 ● Number of merged pull requests before/after: 342 -> 377 +35
 ● Commits in github before/after: 1030 -> 1167 +137
 ● Number of tests before/after: 6 -> 6 +0

 These statistics were generated through the following commands:
 ● find ./ | egrep '\.(F|F90|c|py|ipynb)$' | wc -l
 ● cat `find ./ | egrep '\.(F|F90|c|py|ipynb)$'` | wc -l
 ● git log --format=oneline | grep "Merge" | wc -l
 ● git log --format=oneline | grep -v "Merge" | wc -l
 ● Tests were manually counted

 14

 15

