
Rayleigh Hackathon 2024 Report
Logistics 1
Introduction 2
Land Acknowledgement 3
Timeline 3
Participants and areas of interest 5
Resources 7

Git Tutorial: 7
Visual Studio Code Tutorial 8

Report on projects the participants worked on 9
Fixed the conda development environment for MacOS 9

Rene Gassmoeller, Philipp Edelmann, Tami Rogers, Nick Featherstone 9
Fixed the automatic container build for x86 and Mac ARM architectures 10

Rene Gassmoeller 10
Containers for the NSF/TACC supercomputers 10

Rene Gassmoeller 10
Added an image gallery and updated the Rayleigh documentation 11

Brandon Lazard 11
Added a Pseudo-Incompressibility option 11

Brad Hindman, Loren Matilsky, Nick Featherstone 11
Updated Documentation to Include Streamfunction Equations solved by Rayleigh 12

Tami Rogers & Philipp Edelmann 12
Included “Newtonian Cooling” (Heating function) 12

Nick Featherstone & Tami Rogers 12
Modified the Configuration Script to Check for the Correct Combination of Libraries Specified
13

Brandon Lazard, Rene Gassmoeller, Nick Featherstone 13
Added a Function to read in the Rayleigh Checkpoint Files 13

Rathish Ratnasingam, Nick Featherstone 13
Added a Jupter Notebook to read in the Rayleigh Checkpoint Files and Plot its output 13

Brandon Lazard, Nick Featherstone 13
Parallel I/O Bug Fixes 13

Nick Featherstone 13
Extra Scalar Fields 14

Cian Wilson 14
Coupled Boundary Conditions 14

Cian Wilson 14

Custom Reference States for Extra Scalar Fields 14
Cian Wilson, Nick Featherstone 14

Update publication lists 14
Lorraine Hwang 14

Allowed Rayleigh to increase resolution in multiple Chebyshev domains 15
Loren Matilsky + Nick Featherstone 15

Fixed small logical issue with the constants in the “equations Rayleigh solves” part of
documentation 15

Loren Matilsky + Nick Featherstone 15
CMake build system alternative 15

Philipp Edelmann + Rene Gassmoeller 15
GPU prototyping 15

Philipp Edelmann + Tami Rogers 15
2024 Statistics about Rayleigh’s growth during the hackathon 16

Logistics
Slack:
https://join.slack.com/t/rayleighworkspace/shared_invite/zt-1fy7the9g-I80zezN~0bf64mFp2vKRi
w

Documentation Outline
https://docs.google.com/document/d/1qxnbEpvC8UMeh98dMDcbBtHp8ylC9YM4RXpJREB1Dm
s/edit?usp=sharing

1

https://join.slack.com/t/rayleighworkspace/shared_invite/zt-1fy7the9g-I80zezN~0bf64mFp2vKRiw
https://join.slack.com/t/rayleighworkspace/shared_invite/zt-1fy7the9g-I80zezN~0bf64mFp2vKRiw
https://docs.google.com/document/d/1qxnbEpvC8UMeh98dMDcbBtHp8ylC9YM4RXpJREB1Dms/edit?usp=sharing
https://docs.google.com/document/d/1qxnbEpvC8UMeh98dMDcbBtHp8ylC9YM4RXpJREB1Dms/edit?usp=sharing

Introduction
For the 2024 Rayleigh hackathon, 10 user-developers of Rayleigh worked in an in-person
hackathon over a 5-day period in Granby, CO. Attendees included a mix of new and veteran
users, with career stages spanning from early to late career. Experts from geophysics,
solar/stellar physics, and planetary atmospheres were all represented at this year’s workshop.
Several improvements to the source code, documentation, and supporting analysis routines
were completed and/or initiated during this year’s week-long workshop.

A major effort of this year’s workshop was to complete the implementation and documentation
of Rayleigh’s “multiple-scalar-field” mode. When active, this mode of Rayleigh allows the
advection-diffusion equation to be solved for additional scalar quantities (analogous to entropy
or temperature). Those scalar variables act as passive tracers of the flow and, if desired, can
be coupled via buoyancy to the momentum equation, making them active contributors to the
dynamics. In addition, they can couple, in an arbitrary, user-defined fashion, to any of the other
system variables at the boundaries. These changes allow, among other things, for Rayleigh to
better represent the compositional convection and subsequent plating of iron onto the Earth’s
solid inner core. Discussions around this project began pre-2020, and the initial development
began at the 2022 hackathon. This functionality is now fully-implemented for the Boussinesq
mode of Rayleigh. As we are still thoroughly testing these new additions, documentation
appears in the “Under Development” section of the User Guide for now.

Programming for another large addition to the physics supported by Rayleigh was nearly
completed at this year’s hackathon. The goal of that effort was to enable the use of the
so-called “pseudo-incompressible” approximation in Rayleigh. This approximation would act as
an alternative to the Boussinesq and anelastic approximations already admitted by the code. As
with those two approximations, the pseudo-incompressible approximation similarly assumes a
low-Mach number flow. At the same time, it places fewer restrictions on the size of thermal
perturbations with respect to the background temperature or entropy – making it particularly
suitable for the study of convective overshoot. An initial draft of the new code and associated
documentation was completed at this year’s workshop, and the new additions are now
undergoing careful testing. We plan for these additions to be incorporated into the main
codebase by this fall’s release.

Worth highlighting also is another project which was a bit more diffuse in that it was composed
of several smaller subprojects and pull-requests, involved improvements to the robustness of
Rayleigh’s build system and containerization. Rayleigh’s cross-system support was improved
by transitioning the conda development environment’s math dependencies from MKL to
OpenBLAS/FFTW3. This change enables seamless support on both PC and Mac systems. In
addition, updated containers were produced for both the CI system employed by Rayleigh and
the large-scale systems at the Texas Advanced Computing Center (TACC). Finally, as our user

2

base has grown, so too has the list of operating systems and compilers available to our users.
While the configure script works well for most Intel and AMD systems, CMake support was also
added at this year’s workshop to facilitate porting Rayleigh to system configurations not
envisioned by the configure script.

In addition to these larger projects, a number of smaller projects were undertaken that
substantially improved the code’s usability. These included updates to the documentation,
updates to the notebook examples, several bug fixes, and continued exploration of the potential
for using GPUs. Those efforts are documented in more detail below. All new additions to the
codebase resulting from this workshop will be wrapped into the Rayleigh 1.3 release later this
fall. Below is the timeline and a log of the individual contributions. Many of these contributions
are discussed in greater detail following the table of participants’ interests.

Land Acknowledgement
We acknowledge the indigenous people and land in which we are gathered. Granby, Colorado
has been home to the Núu-agha-tʉvʉ-pʉ̱ (Ute) and Tséstho’e (Cheyenne) peoples who have
provided stewardship of this land over many centuries. We are honored and grateful to be here
today on their traditional lands.
See: https://landacknowledgements.org/native-lands/

Timeline
Day Scheduled items

Sunday 06/16 Arrival.

Monday, 06/17 9 am: Introductions. Morning rounds
10:30 am: Git + pull request tutorial, VS Code

Tuesday, 06/18 9:00 am: Morning rounds

Wednesday, 06/19 9:00 am: day off

Thursday, 06/20 9 am: Morning rounds

Friday, 06/21 9 am: Morning rounds

Saturday, 06/22 Departure by 10A

3

https://landacknowledgements.org/native-lands/

4

Participants and areas of interest

Name, affiliation, email Goals and interests for this hackathon

Rene Gassmoeller,
University of Florida
rene.gassmoeller@mailbox.org

1. Help others with their goals
2. Review pull requests
3. Create singularity container for TACC systems
4. Create an online hubzero tool?
5. Maybe: run some models

Lorraine Hwang
UC Davis
ljhwang@ucdavis.edu

1. Logistics
2. Baking
3. Update citations

Nick Featherstone
Southwest Research Institute
nicholas.featherstone@colorado.edu

1. Introducing people to Rayleigh’s design
2. Helping others

Cian Wilson
Carnegie Science
cwilson@carnegiescience.edu

1. Document scalar fields
2. Finalize coupled bc pull request
3. Scalar fields with custom reference states

Rathish Previn Ratnasingam
Newcastle University, UK
rathish.ratnasingam@ncl.ac.uk

1. Introduce FD formulation for MHD, anelastic
calculations

Philipp Edelmann
Los Alamos National Laboratory
pedelmann@lanl.gov

1. Prototype some GPU code (OpenMP)
2. add CMake as another build system option

Bradley Hindman
University of Colorado
hindman@colorado.edu

1. Develop a pseudo-incompressible formulation
of the equation sets

2. Add additional outputs for the magnetic
induction equation

Brandon Lazard
University of California
bjlazard@g.ucla.edu

1. Add image gallery for Rayleigh
2. Learn, Learn, Learn

Tami Rogers 1. Updating documentation
2. Working on getting similar code to Rayleigh on

gpu
3. Looking into putting tracer particles into post

processing

5

4. Using Rayleigh for Hot Jupiters?

Loren Matilsky
UC Santa Cruz
loren.matilsky@gmail.com

1. New terms (including non-LBR) in momentum
equation + energy equation

2. Allow changes in radial resolution (including
multiple domains).

3. Update documentation for equation sets.
4. Add new time-scale choices for

nondimensional anelastic reference_type = 5.
5. Look at magnetic induction equation outputs

with Brad/Nick.
6. Try to implement r=0 coordinate singularity.

6

Resources

Git Tutorial:
- The slides from an earlier presentation:

https://www.dropbox.com/s/6xvb4pyq7mefxp7/Git-Github-introduction.pdf?dl=0
- Git commands cheat sheet: https://education.github.com/git-cheat-sheet-education.pdf
- Github workflow: https://guides.github.com/introduction/flow/
- Git tutorial: https://swcarpentry.github.io/git-novice/

1. Explain and set up Git:
a. https://swcarpentry.github.io/git-novice/01-basics.html
b. https://swcarpentry.github.io/git-novice/02-setup.html

2. Explain and setup Visual Studio Code:
a. https://code.visualstudio.com/download

3. Explain Github Workflow:
a. https://guides.github.com/introduction/flow/
b. Ensure forked repositories
c. Ensure proper remotes

4. Walkthrough
a. Create Branch

i. ‘git checkout main
ii. ‘git pull upstream main
iii. ‘git checkout -b branch_name'

b. Create commit
i. ‘git add FILE’
ii. ‘git commit -m ‘A short message describing the change’

c. Push and open PR
i. ‘git push origin branch_name
ii. Open PR on github (CTRL-Click on shown link)

d. Wait for review
e. Address review (repeat steps b,c,d)
f. Success!

Now repeat the steps in 3. on your own.

7

https://www.dropbox.com/s/6xvb4pyq7mefxp7/Git-Github-introduction.pdf?dl=0
https://education.github.com/git-cheat-sheet-education.pdf
https://guides.github.com/introduction/flow/
https://swcarpentry.github.io/git-novice/
https://swcarpentry.github.io/git-novice/01-basics.html
https://swcarpentry.github.io/git-novice/02-setup.html
https://code.visualstudio.com/download
https://guides.github.com/introduction/flow/

Visual Studio Code Tutorial
- VS Code is an Integrated Development Environment (IDE) that simplifies programming
- It is free, powerful, and used by the majority of open-source software developers
- If you are already comfortable with a different IDE stick to it, if you do not use an IDE so

far, please install VS code
- It is simpler for us to explain and help you if most of us use the same IDE
- How to get: https://code.visualstudio.com/
- Documentation: https://code.visualstudio.com/docs
- Necessary/Useful extensions for this hackathon:

- https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
- https://marketplace.visualstudio.com/items?itemName=MS-vsliveshare.vslivesha

re
-

8

https://code.visualstudio.com/
https://code.visualstudio.com/docs
https://marketplace.visualstudio.com/items?itemName=eamodio.gitlens
https://marketplace.visualstudio.com/items?itemName=MS-vsliveshare.vsliveshare
https://marketplace.visualstudio.com/items?itemName=MS-vsliveshare.vsliveshare

Report on projects the participants worked on

Fixed the conda development environment for MacOS
Rene Gassmoeller, Philipp Edelmann, Tami Rogers, Nick Featherstone

The Rayleigh conda environment contained the Intel MKL package, which is not supported for
modern MacOS hardware architectures. In addition the configure script did not always select the
correct standard C++ library on MacOS. All issues with the default Rayleigh installation
instructions for Mac have been fixed and Intel MKL has been replaced with OpenBLAS as the
default BLAS/LAPACK implementation.

9

Fixed the automatic container build for x86 and Mac ARM
architectures
Rene Gassmoeller

I fixed the automatic build process for the Rayleigh docker images that are built and distributed
for both x86 and ARM64 architectures. The images are now automatically uploaded and
distributed via DockerHub and GitHub Container Registry.

Containers for the NSF/TACC supercomputers
Rene Gassmoeller

Rayleigh now builds and distributes docker containers that are compatible with the container
system Apptainer on the NSF/TACC supercomputers Stampede3 and Frontera. These
containers are available at https://hub.docker.com/r/geodynamics/rayleigh/tags and documented
in the Rayleigh documentation
(https://rayleigh-documentation.readthedocs.io/en/latest/doc/source/User_Guide/getting_started
.html#using-the-apptainer-container-system).

10

https://hub.docker.com/r/geodynamics/rayleigh/tags
https://rayleigh-documentation.readthedocs.io/en/latest/doc/source/User_Guide/getting_started.html#using-the-apptainer-container-system
https://rayleigh-documentation.readthedocs.io/en/latest/doc/source/User_Guide/getting_started.html#using-the-apptainer-container-system

Added an image gallery and updated the Rayleigh documentation
Brandon Lazard

An image gallery has been added to the documentation, and several images from published
papers using Rayleigh have been added to the gallery (with permission from the authors). As
part of this process, the publications page in the documentation was updated through 2023.

Added a Pseudo-Incompressibility option
Brad Hindman, Loren Matilsky, Nick Featherstone

The anelastic approximation is only self-consistent in atmospheres that have a nearly adiabatic
stratification. The pseudo-incompressible approximation, however, is one that works both in
stable (i.e., nonadiabatic) regions and convection zones. The approximation is primarily a
modification of the continuity equation, which means that the stream function implementation
used by Rayleigh needed to be modified.

11

https://rayleigh-documentation.readthedocs.io/en/latest/doc/source/images/image_gallery.html
https://rayleigh-documentation.readthedocs.io/en/latest/doc/source/publications/publications.html

We made all of the required changes to implement the pseudo-incompressible approximation in
Rayleigh. The new option appears as an alternative way to run the anelastic system (since the
two approximations are similar). Making these changes involved adding several new reference
state variables that track the entropy and its radial derivatives. Further, throughout the Physics
modules, additional terms and multiplicative factors needed to be added that acknowledge
entropy variation in the background. Finally, we added a term in the buoyancy that is normally
ignored under the LBR formulation of the anelastic approximation (it is proportional to the
background entropy gradient). In the future, it should be possible to add a flag that would
instruct the anelastic mode to also include this term, if desired. We are still in the process of
testing this functionality, and making sure that errors in Rayleigh’s native anelastic mode were
not created unintentionally. Once this testing is complete, the pseudo-incompressible code will
be wrapped into the main branch of Rayleigh (hopefully late summer/early fall of 2024).

Updated Documentation to Include Streamfunction Equations
solved by Rayleigh
Tami Rogers & Philipp Edelmann

Previous documentation included the (magneto-)hydrodynamic equations cast in terms
of velocity and magnetic field. The equations that are actually solved in Rayleigh are
cast in terms of the stream/flux functions W,Z,P, A and C. While equivalent, their
somewhat more complicated form has now been described in the documentation.

Included “Newtonian Cooling” (Heating function)
Nick Featherstone & Tami Rogers

An optional Newtonian cooling term and associated documentation was developed for
Rayleigh this week. This appears to be working as planned and will be wrapped into the
main codebase soon, once a published hot Jupiter model has been tested with
Rayleigh.

12

Modified the Configuration Script to Check for the Correct
Combination of Libraries Specified
Brandon Lazard, Rene Gassmoeller, Nick Featherstone

Previously, the user could specify an incorrect combination of libraries in their configuration
command. This would result in the code approving the combination but during the compilation it
would output an error at the end. To prevent this, we modified the configuration script to output
an error if an incorrect combination of libraries is specified.

Added a Function to read in the Rayleigh Checkpoint Files
Rathish Ratnasingam, Nick Featherstone

Some of us spent the week writing a Python routine that can read in a Rayleigh checkpoint file.
The checkpoint structure is similar to, but also somewhat different from the Shell_Spectra output
structure. The latter stores the spectrum as a square array (lmax+1 x lmax+1) and includes
zero values for ell-m combinations with m > ell. The Checkpoint files are stored in a more
compact format, omitting the zeros. This meant that the shell spectra function in
rayleigh_diagnostic.py could not be used directly to read in a checkpoint. The new Python
function is capable of reading a checkpoint file and returning a data structure consistent with
that used for the Shell_Spectra class.

Added a Jupter Notebook to read in the Rayleigh Checkpoint
Files and Plot its output
Brandon Lazard, Nick Featherstone

Using the new read_cheakpoint function in rayleigh_diagnostics.py (described above), we
created a tutorial notebook that demonstrates how to read checkpoint files. The notebook walks
the user through transforming the spectral checkpoint input into physical space and plotting the
results.

Parallel I/O Bug Fixes
Nick Featherstone

We recently uncovered a bug in Rayleigh where the code attempted to update and close a file
that failed to open. An initial fix of this bug introduced another (worse) bug that caused all
parallel I/O to hang. This bug was fixed during the course of this workshop
.

13

Extra Scalar Fields
Cian Wilson

Extra scalar fields were added at a previous hackathon but not documented. This year we
documented this functionality and added it to the “Under Development” section of the User
Guide. This documentation includes a summary of the functionality that has been tested so far
and a future development plan for extending this functionality to additional reference-state
types.

Coupled Boundary Conditions
Cian Wilson

The final pieces of development for coupled boundary conditions were implemented during this
hackathon. This included warning users of the change of previous default behaviors and the
removal of unnecessary flags for passive (not coupled) fields. Documentation was built on top
of the documentation for extra scalar fields in the “Under Development” section of the User
Guide.

Custom Reference States for Extra Scalar Fields
Cian Wilson, Nick Featherstone

Extra scalar fields currently only work with a limited set of reference states (and have only been
used with Boussinesq). Extending this to a wider range of applications requires that the user is
able to specify custom reference states for the scalar fields, which is currently not implemented.
In order to not interfere with the custom reference states for mandatory fields we devised a
development plan for new custom constants (“d”) and custom functions (“g”) specifically for the
extra scalar fields. This has been included in the documentation and development has begun
but not completed.

Update publication lists
Lorraine Hwang

We aligned the geodynamics.org citations with Rayleigh publications.

14

Allowed Rayleigh to increase resolution in multiple Chebyshev
domains
Loren Matilsky + Nick Featherstone

We modified src/Physics/Checkpointing.F90 to allow the user to increase radial resolution even
for multiple Chebyshev domains (e.g., a checkpoint created with ncheby=64,64,64 could be
restarted with ncheby = 96,128,96). Before, the code would effectively scramble the Chebyshev
coefficients between different subdomains.

We also caused Rayleigh to throw an error and exit when the user tried to decrease radial
resolution in any subdomain (the error and exit apply even to the single-domain case). Before,
even in one domain, the code simply would not “do anything” if the user tried to lower radial
resolution, with the result that all fields were initialized to zero and the code would happily
integrate forward.

Fixed small logical issue with the constants in the “equations
Rayleigh solves” part of documentation
Loren Matilsky + Nick Featherstone

We made it clear in the documentation that c_9 = c_8 * c_4 * c_7 (which multiplies the Ohmic
heating term) is not an independent constant, if the equations are to be consistently
nondimensionalized.

CMake build system alternative
Philipp Edelmann + Rene Gassmoeller

We can now use CMake as an alternative to the configure script. The main advantage of this is
that we get support for new compilers and libraries for "free". We also added CI tests for this
method on Ubuntu and macOS.

GPU prototyping
Philipp Edelmann + Tami Rogers

We experimented with offloading part of the workload to GPUs in a simple anelastic code similar
to Rayleigh. We tested with OpenMP target offloading and the nvfortran and gfortran compilers.
In early tests we saw that we were dominated by the copy operations because only few loops
were moved to the GPU. This is expected to improve once more parts of the code are moved to

15

the GPU. Gfortran is stricter with its interpretation of constructs like defaultmap(none), which
nvfortran largely seems to ignore.

2024 Statistics about Rayleigh’s growth during the
hackathon
The following contains a number of statistics about how much Rayleigh has grown during the
hackathon (between Jun 15 2024, commit 28dd05d and Jun 25 2023, commit f32a7e2 to allow
for late merges):

● Number of source files in Rayleigh before/after: 170 -> 172 + 2
● Lines of code in Rayleigh before/after: 71741 -> 72699 + 958
● Number of merged pull requests before/after: 451 -> 494 + 43
● Commits in github before/after: 1370 -> 1499 + 129
● Number of tests before/after: 6 -> 8 + 2
● Lines of documentation before/after: 4664 -> 4950 + 286

Statistics from 2023:
● Number of source files in Rayleigh before/after: 166 -> 171 +5
● Lines of code in Rayleigh before/after: 67716 -> 72398 +4682
● Number of merged pull requests before/after: 406 -> 424 +18
● Commits in github before/after: 1242 -> 1309 +67
● Number of tests before/after: 6 -> 6 +0

These statistics were generated through the following commands:
● To checkout a certain date:

git checkout `git rev-list -n 1 --first-parent --before="2024-06-15 12:00" main`
● find ./ | egrep '\.(F|F90|c|py|ipynb)$' | wc -l
● cat `find ./ | egrep '\.(F|F90|c|py|ipynb)$'` | wc -l
● git log --format=oneline | grep "Merge" | wc -l
● git log --format=oneline | grep -v "Merge" | wc -l
● Tests were manually counted
● cat `find -L doc/source | egrep '\.(rst)$'` | wc -l

16

Left to right: Philipp Edelmann, Tami Rogers, Brad Hindman, Nick Featherstone, Rene
Gassmoeller, Loren Matilsky, Rathish Previn Ratnasingam, Cian Wilson, Brandon Lazard

17

