
w
w
w
.d
ea
lii
.o
rg

Adaptive Mesh Refinement

Wolfgang Bangerth

Department of Mathematics
Texas A&M University

Institute for Geophysics
University of Texas at Austin

w
w
w
.d
ea
lii
.o
rg

The Adaptive Paradigm

Philosophy of local mesh refinement:
● Solve on a rather coarse grid
● Compute an error criterion
● If error < tolerance, then stop
● Otherwise refine mesh
● Solve again on finer grid

Advantage: We can use meshes adapted to the solution and/or what
 we are interested in

Disadvantage: We have to solve more than once, and we need more
 sophisticated algorithms

w
w
w
.d
ea
lii
.o
rg

● Will we gain anything? This depends on
- whether we need meshes fitted to geometric features
- whether we need fully adapted time varying meshes
- the type of the equation

● How can we generate adaptive meshes?
- mesh generators
- adaptive mesh refinement using error estimators and indicators

● How to use them in our codes?
- What do we need for existing codes?
- What do we need for new codes?

● Parallelization and load balancing issues for adaptive meshes

Questions About Adaptivity

w
w
w
.d
ea
lii
.o
rg

● Adaptive meshes can be beneficial because they promise to reach
the same accuracy with less cells

● Can focus degrees of freedom where the solution shows
significant variation

● Avoid generation of fine meshes (avoids scalability, bad shapes)
by generating them as necessary from coarse meshes

Adaptivity is good if and only

if “the action is localized”

When do we gain by using Adaptivity?

w
w
w
.d
ea
lii
.o
rg

When do we gain by using Adaptivity?

Positive example: Advective transport in a given wind field
(Geophysical analogy: Transport of water and carbon by
subducting slabs)

Savings from adaptive meshes are
apparent. Note also the lack of
numerical dispersion even without
aligned meshes!

w
w
w
.d
ea
lii
.o
rg

Positive example: Diffusion with localizes sources
(Geophysical analogy: Heat conduction around hot plumes?)

When do we gain by using Adaptivity?

w
w
w
.d
ea
lii
.o
rg

Positive example: Elastoplastic deformation
(Geophysical analogy: Long-term continental deformation,
subduction bending of continental plates)

When do we gain by using Adaptivity?

w
w
w
.d
ea
lii
.o
rg

When do we gain by using Adaptivity?

Counterexample: Wave equation in heterogeneous media often
does not yield to adaptivity because the domain “is full of waves”
after some time

w
w
w
.d
ea
lii
.o
rg

When do we gain by using Adaptivity?

Counterexample: Wave equation in heterogeneous media often
does not yield to adaptivity because the domain “is full of waves”
after some time

w
w
w
.d
ea
lii
.o
rg

When do we gain by using Adaptivity?

Counterexample: Geodynamo with its global turbulence and
small-scale features

w
w
w
.d
ea
lii
.o
rg

How to generate adaptive meshes

We need some sort of refinement criterion. For example:

● A mathematically well-founded error estimate, possibly taking
into account what exactly we are interested in

● A heuristic indicator that tells us where a function is smooth and
where it is not:
- may not get the blessing of your mathematician
- but is independent of progress in construction of estimators
- turns out to be a really successful strategy and appears to be
 pretty universally applicable!

Most such indicators look at derivatives of (components of the)
solution, for example:

 K = hK
1/2
∥[∂uh /∂n]∥ or K = hK

2
∥∇ h

2uh∥

w
w
w
.d
ea
lii
.o
rg

How to generate adaptive meshes

We need to use the refinement criterion for mesh refinement:

● For existing codes, one can use refinement criteria as weight
function for the creation of a new mesh

● Better but more invasive: Allow codes to store meshes as objects
that can be dynamically refined or coarsened

w
w
w
.d
ea
lii
.o
rg

How to use adaptive meshes

What we need for existing codes:

● It is considered hard to convert existing codes to use adaptive
meshes because the changes in data structures and algorithms are
so pervasive. These changes involve:
- mesh data structures
- finite elements/finite difference stencils
- handling of hanging node constraints
- linear solvers/preconditioners
- top-level logic

● People generally assume that it is simpler to write a new code
from scratch (but there appears to be little evidence in this area)

● Rewrite may be less painful than thought because of experience
gained from previous codes (e.g.: what discretization, which
solvers work, and which don't) and using libraries that support
adaptive finite element codes.

w
w
w
.d
ea
lii
.o
rg

How to use adaptive meshes

What we need for new codes:

● Top-level code that loops over successively finer meshes

● Refinement criteria

● Code that transfers the solution from one mesh to another

● Solvers that are robust against widely varying mesh sizes

● Code that can deal with “hanging nodes”

w
w
w
.d
ea
lii
.o
rg
Hanging nodes

Consider a mesh like this, with hanging node 2:

To make sure that finite element solution is continuous, we require

i.e. u
2
 is not a “real” degree of freedom. It therefore needs to be

eliminated from the linear system, and we set it to the correct
value after solving.

u2=
1
2
u0

1
2
u1

w
w
w
.d
ea
lii
.o
rg
Hanging nodes

For meshes with many hanging nodes:

We get a whole set of constraints,

and the linear system

needs to be transformed to

ui
constrained

=C iju j

Au=b

Auunconstrained
=bunconstrained , ui

constrained
=C iju j

w
w
w
.d
ea
lii
.o
rg

How to use adaptive meshes

What we need for new codes:

● Top-level code that loops over successively finer meshes
● Refinement criteria
● Code that transfers the solution from one mesh to another
● Solvers that are robust against widely varying mesh sizes
● Code that can deal with “hanging nodes”

Except for the first one (which is in
application code), all these are available as
building blocks in libraries such as deal.II !

w
w
w
.d
ea
lii
.o
rg
Hanging nodes

Code example: Assembling matrix for the Laplace equation

active_cell_iterator cell = dof_handler.begin_active(),
 endc = dof_handler.end();
for (; cell!=endc; ++cell) {
 cell_matrix = 0;
 cell_rhs = 0;
 fe_values.reinit (cell);
 for (q_point=0; q_point<n_q_points; ++q_point)
 for (i=0; i<dofs_per_cell; ++i)
 for (j=0; j<dofs_per_cell; ++j)
 cell_matrix(i,j) += (fe_values.shape_grad(i,q_point) *
 fe_values.shape_grad(j,q_point) *
 fe_values.JxW(q_point));

 cell->distribute_local_to_global (cell_matrix,
 global_matrix)
}

w
w
w
.d
ea
lii
.o
rg
Hanging nodes

Code example: Eliminating hanging node constraints

ConstraintMatrix hanging_node_constraints;
DoFTools::make_hanging_node_constraints
 (dof_handler, hanging_node_constraints);

hanging_node_constraints.condense (system_matrix);
hanging_node_constraints.condense (system_rhs);

w
w
w
.d
ea
lii
.o
rg

The deal.II library

deal.II is a finite element software library:

● Provides support for adaptive meshes in 1d, 2d, and 3d through a
unified interface

● Has standard refinement indicators built in

● Provides a variety of different finite element types (continuous,
discontinuous, mixed, Raviart-Thomas, ...)

● Low and high order elements available

● Full support for multi-component problems

● Has its own sub-library for dense + sparse linear algebra

● But also comes with interfaces to PETSC, UMFPACK

● Supports SMP + cluster systems (including an interface to METIS)

w
w
w
.d
ea
lii
.o
rg

The deal.II library

● Interfaces to all major graphics programs

● Fairly widely distributed in the finite element/adaptivity community:
- 200 downloads per month
- >1000 hits on homepage
- >10 publications per year based on deal.II

● Supports a wide variety of applications in all sciences

● Presently over 350,000 lines of C++ code

● More than 4000 pages of documentation

● ~25 tutorial programs that explain the use of the library in detail,
starting from very simple to parallel quasistatic elasticity/multiphase
flow/neutron transport/... applications

● Open Source, active development

w
w
w
.d
ea
lii
.o
rg

Challenges in adaptivity

● Parallelization, partitioning and load balancing

After computing the solution, the refinement indicator tells me which
cells to refine

Problem: The individual blocks are now no longer load balanced!
Solution: We need to partition our domain again after refinement.

Problem: Requires access to the entire mesh to be efficient!
Solution: ???

w
w
w
.d
ea
lii
.o
rg ● Adaptivity promises better resolution with less work

● Requires substantial changes to codes

● It may be simpler to re-write a code

● But: New programs can draw from very large libraries of
building blocks!

Conclusions

w
w
w
.d
ea
lii
.o
rg

Visit the deal.II library:

http://www.dealii.org

The deal.II library

