Magma dynamics working group(s)

- Working group
 - Marc Spiegelman (Columbia U.)
 - Ritske Huismann (Bergen U.)
 - Garrett Ito (U. of Hawaii)
 - Richard Katz (Oxford U.)
 - Boris Kaus (ETH Zurich)
 - Laurent Montési (U. Maryland)
 - Benjamin Phillips (Los Alamos)
- CIG Development:
 - Marc Spiegelman: PETSc, StG
 - Dave Lee (VPAC): StG
 - Wolfgang Bangerth: deal.ii
 - Laurent Montési: COMSOL

- OCE Proposal team
 - Marc Spiegelman
 - Paul Asimow
 - Michael Gurnis
 - Garrett Ito
 - Laurent Montési
 - Peter van Keken

Magma dynamics goals

- Short-term
 - Implementation and testing of McKenzie equation, at least using StGermain
 - MADDS benchmark 1-4, at least with StGermain
- Long-term
 - Coupling of magma dynamics with other software
 - MADDS benchmark 5-6

- Coupling with computational thermodynamics software (e.g. MELTS) and geochemical databases
- Other
 - Submitted proposal to OCE in February 08: coupling with thermodynamics

MADDS: Magma Dynamics Demonstration Suite

- Demonstration suite, not software
 - 6 benchmarking exercises of increasing complexity, building up to couple Mid-Ocean Ridge models using the "McKenzie Equations"
 - Definition in "An Introduction and Tutorial to the "McKenzie Equations" for Magma Migration", written by Marc Spiegelman and students, available on CIG website
 - Implementation on various software platforms
 - CIG sponsors Dave Lee at VPAC for main effort
 - Other community effort (slower)

Benchmarks

- 1: 2D ridge / 3D segmented ridge, Stokes only (test pressure solution)
- > 2: Test advection (ridge or other deformation)
- 3: Constant porosity ridge (post-processing)
- 4: Solitary wave (Darcy flow+compaction)
- 5: Shear bands
- 6: Coupled ridge, forced melting

MADDS status

Software	Who?	Benchmark					
		1	2	3	4	5	6
StGMADDS	Dave Lee	X	X	×	X		1
PETSC-based	Marc Spiegelman				X	X	
COMSOL	Laurent Montési	×	1	\checkmark			
Deal.II	Wolfgang Bangerth	X					

X: Essentially done
In progress

Stg MADDS BM1

- Benchmark 1
 necessitated
 implementation of
 higher-order elements
 - Quadratic in velocity
 - Linear in pressure
 - Pressure on internal nodes or at vertices
- Problems interpolating a reference solution: solved!

STG MADDS BM4

pressure

porosity as field

 First time coupled McKenzie description of two phase flow in open-source code!

Deal II

Stokes solver

MADDS in COMSOL

- All set for BM1
 - Good pressure
 - Refined mesh
- BM2 and beyond:
 - Trouble with advection

Evaluation

StG MADDS

- Software works; Should be compatible with other StGermain-based software), including Gale
- Slow performance
- COMSOL
 - Easy to use; Ready applications
 - Advection so-so (to be tested further)
 - Shared memory parallelization only
- deal.ii
 - Too early to tell but promising
- Marc's PETSc solitary wave code
 - Works, efficient, parallel
 - Caution: meant as benchmarking code only

What's next?

- Go on with MADDS
 - Continue with StG MADDS and build up with deal.ii and PETSc
 - Coordinate with other WGs for compatibility/coupling
- Multiphysics/thermodynamics coupling
 - Waiting to hear about OCE proposal
 - Coupling between regional and global mantle flow
- Community training
 - Define benchmark specifics
 - Publish cookbooks for in StG MADDS, COMSOL, deal.ii, other?