CIG Business Meeting

December 11, 2007

Short-Term Crustal Dynamics Working Group

Brad Aagaard

Workshops

- Community Finite-Element Modeling workshop, June 25–29, 2007
 - 6th annual workshop
 - Sponsored by CIG, SCEC, NSF, NASA
 - 60 participants
 - Mixture of science talks, training, and discussion of working group priorities for CIG
- Numerical Modeling of Crustal Deformation workshop, June 23–27, 2008, Colorado School of Mines
 - Seeking funding from same sponsors
 - Expect similar number of attendees
 - Mixture of science talks, training, and discussion of working group activities
 - Suggestions for science talks welcome!
 - Emphasis on application of codes to research problems

Current Working Group Activities

- PyLith 1.0 (Brad Aagaard, Charles Williams, Matthew Knepley)
 - Parallel, 1-D, 2-D and 3-D finite-element code for modeling crustal deformation associated with earthquake faulting and elastic and/or viscoelastic rheologies
 - Version 1.0.0 released at CFEM 2007 workshop
 - Version 1.0.2 released Dec 5
 - Expect 5 additional releases in next 2 years (2–3 before workshop)
- Cataloging of semi-analytic codes (Rob Mellors)
 - Collect codes useful for utility calculations and benchmarking
 - May request help from CIG to make most valuable codes more accessible
- Benchmarking crustal deformation codes
 - Working with CIG (Luis Armendariz) to develop infrastructure for benchmarking codes (PyLith, GeoFEST, COMSOL)

Long-Term Plans

• PyLith

- Resolve 4-D elastic, plastic, and viscoelastic deformation associated with earthquake faulting
- Integrate computing quasi-static and dynamic deformation
- Data assimilation
 - Need tools for using EarthScope data as constraints in modeling
- Adjoint methods
 - Meaningful error estimation
 - Adaptive mesh refinement
 - Inversion of earthquake source parameters and rheologies

Links to Other Working Groups

- Computational infrastructure
 - Sieve/PETSc Finite-element operations and linear algebra
 - Pyre Simulation framework for getting user input and driving simulations
 - Mesh generation for realistic geologic structure
 - Efficient, scalable solvers/preconditioners for multiscale problems
- Understanding the Earth
 - Physical properties (bulk and fault rheologies)
 - Earthquake dynamics
 - Deformation associated with earthquake faulting
 - Earthquake rupture is input to Computational Seismology
 - Tectonic deformation
 - Deformation associated with strain accumulation and postseismic relaxation
 - Plate motion is output from Mantle Convection
 - Fault evolution is output from Long-Term Crustal Dynamics

Obstacles

- Mesh generation for realistic geologic structure
- Efficient, scalable solvers/preconditioners for multiscale problems
- Understanding sensitivity of modeling results to uncertainty in geological structure and numerical discretization
- Building/installing complex software with many dependencies

