Science Gateways on the TeraGrid

Jeffrey P. Gardner Pittsburgh Supercomputing Center gardnerj@psc.edu

Outline

- Brief introduction to the TeraGrid
- Making the TeraGrid useful for Science Gateway communities

The TeraGrid

- A major paradigm shift for HPC resource providers
- Make NSF
 resources useful
 to a wider
 community

Strength through diversity!

The TeraGrid Strategy

- Building a distributed system of unprecedented scale
 - 40+ teraflops compute
 - 1+ petabyte storage
 - 10-40Gb/s networking
- Creating a unified user environment across heterogeneous resources
 - Single user support resources.
 - Single authentication point
 - Common software functionality
 - Common job management infrastructure
 - Globally-accessible data storage

 Create a *unified* national HPC infrastructure that is both *heterogeneous* and *extensible*

"Grid-Like" Usage Scenarios Currently Enabled by the TeraGrid

TeraGrid is in its infancy!

"Traditional" massively parallel jobs

- Tightly-coupled interprocessor communication
- storing vast amounts of data remotely
- remote visualization
- Thousands of independent jobs
 - Automatically scheduled amongst many TeraGrid machines
 - Use data from a distributed data collection
- Multi-site parallel jobs
 - Compute upon many TeraGrid sites simultaneously

Science Gateways A new initiative for the TeraGrid

- Science communities increasingly building their own cyberinfrastructure: "Science Gateways".
 - Provides an easy-to-use solution for community computational needs.
 - Both software and hardware
- Science Gateways will
 - increase overall science throughput by making computers easier to use for knowledge discovery.

Science Gateways A new initiative for the TeraGrid

- But many will often have computing needs that far exceed their own capacity.
- The TeraGrid can provide massive computing resources to these communities on demand.
- Science Gateways can use the TeraGrid to
 - provide community-tailored access to massive compute resources at no additional cost
- Goals:
 - Integration and interoperability.

Three Types of Science Gateways

Web-based Portals

- User interacts with community-deployed web interface.
- Runs community-deployed codes
- Service requests forwarded to TeraGrid resources
- Bridges to Community Grids
 - Jobs forwarded seamlessly between science community grids and TeraGrid

Service Gateways

 Application programs running on users' machines but access services in TeraGrid (and elsewhere)

Types of Gateways: *Web-Based Portal*

- A portal is a gateway to a set of distributed services accessible from a Web browser or desktop tools
- Example: GEON
- Provides single point of access to:
 - Grid authentication
 - Community-deployed data
 - Community-deployed services (e.g. Synseis)
- Seamlessly forwards service requests (and data?) to TeraGrid resources

ΞA

Three Types of Science Gateways

Web-based Portals

- User interacts with community-deployed web interface.
- Runs community-deployed codes
- Service requests forwarded to TeraGrid resources
- Bridges to Community Grids
 - Jobs forwarded seamlessly between science community grids and TeraGrid

Service Gateways

 Application programs running on users' machines but access services in TeraGrid (and elsewhere)

Types of Gateways: *Bridges to Community Grids*

- Many Community Grids already exist or are being built
 - NEESGrid, LIGO, Earth Systems Grid, NVO, Open Science Grid, etc.
- TeraGrid will provide a service framework to enable access in ways that are transparent to their users.
 - The community maintains and controls the Gateway
- Different Communities have different requirements.
 - NEES and LEAD will use TeraGrid to provision compute services
 - LIGO and NVO have substantial data distribution problems.

Science Gateways An expanding user base

Science Gateways A new initiative for the TeraGrid Challenge

- Heterogeneity
 - Software stacks every gateway is a "custom job".
 - Resources different architectures at local, national and international levels
 - Users- from HPC developer to K-12 student
 - Security policies
- How can "centers/Institutions" like the TeraGrid provide and operate in this heterogeneous world?
- Working with Gateways, TeraGrid is starting to answer that question
 - Identifying important generic CyberInfrastructure services
 - Providing those services to communities.

Initial Focus on 10 Gateways

Science Gateway Prototype	<u>Discipline</u>	Science Partner(s)	<u>TeraGrid Liaison</u>
Linked Environments for Atmospheric Discovery (LEAD)	Atmospheric	Droegemeier (OU)	Gannon (IU), Pennington (NCSA)
National Virtual Observatory (NVO)	Astronomy	Szalay (Johns Hopkins)	Williams (Caltech)
Network for Computational Nanotechnology (NCN) and "nanoHUB"	Nanotechnology	Lundstrum (PU)	Goasguen (PU)
National Microbial Pathogen Data Resource Center (NMPDR)	a Biomedicine and Biology	Schneewind (UC), Osterman (Burnham/UCSD), DeLong (MIT), Dusko (INRA)	Stevens (UC/Argonne)
NSF National Evolutionary Biology Center (NESC), NIH Carolina Center for Exploratory Genetic Analysis, State of North Carolina Bioinformatics Portal project	Biomedicine and Biology	Cunningham (Duke), Magnuson (UNC)	Reed (UNC), Blatecky (UNC)
Neutron Science Instrument Gateway	Physics	Dunning (ORNL)	Cobb (ORNL)
Grid Analysis Environment	High-Energy Physics	Newman (Caltech)	Bunn (Caltech)
Transportation System Decision Support	Homeland Security	Stephen Eubanks (LANL)	Beckman (Argonne)
Groundwater/Flood Modeling	Environmental	Wells (UT-Austin), Engel (ORNL)	Boisseau (TACC)
Science Grid [GrPhyN/ivDGL/Grid3]	Multiple	Pordes (FNAL), Huth (Harvard), Avery (Uflorida)	Foster (UC/Argonne), Kesselman (USC-ISI), Livny (UW)

SUPERCOMPUTING

14

Timelines - Fall, 2005

Deploy 3 prototype portals

- LEAD, Bioinformatics, Evolutionary Biology
- Define work plan and application characteristics
 - NVO, nanoHub, Neutron Science
- Port/install software
 - Homeland Security, Flood Analysis, OSG
- Re-Analyze Gateway needs
- Draft Gateways Primer document

Gateways Primer Outline:

Defining generic cyberinfrastructure services

- 1. Introduction
- 2. Science Gateway in Context
 - a. Science Gateway (SGW) Definition(s)
 - b. Science Gateway user modes
 - c. Distinction between SGW and other TeraGrid user modes
- 3. Components of a Science Gateway
 - a. User Model
 - b. Gateway targeted community
 - c. Gateway Services
 - d. Integration with TeraGrid external resources (data collections, services, ...)
 - e. Organizational and administrative structure
- 4. TeraGrid services and policies available for Science Gateways
 - a. Portal middleware tools (user portal and other portal tools)
 - b. Account Management (user models, community accounts,)
 - c. Security environment (security models)
 - d. Web Services
 - e. Scheduling services (and meta-scheduling)
 - f. Community accounts and allocations
 - g. Community Software Areas
 - h. All traditional TeraGrid services and resources
 - i. Ability to propose additional services and how that would interact with TeraGrid operations

- 5. Responsibilities and Requirements for Science Gateways
 - a. Interaction with and compatibility with TeraGrid communities
 - b. Control procedures
 - i. Community user identification and tracking (map TeraGrid usage to Portal user)
 - ii. Use monitoring and reporting
 - iii. Security and trust
 - iv. Appropriate use
- 6. How to get started
 - a. Existing resources
 - i. Publication references
 - ii. Web areas with more details
 - iii. Online tutorials
 - iv. Upcoming presentations and tutorials
 - b. Who to contact for initial discussions
 - c. How to propose a new Gateway
 - d. How to integrate with TeraGrid Gateways efforts.
 - e. How to obtain a resource allocation

Spring, 2006

- Integrate TeraGrid compute resources
 - LEAD, nanoHUB, Bioinf., Evo. Bio., HEP, OSG
- Prototypes
 - web/grid services (Bioinformatics)
 - Data archive hosting (Neutron Science)
 - Data federation models with compute support (Evolutionary Biology)
 - Application hosting services, initial compute resource brokering and data federation. Test for security, scalability.
 - Explore authentication methods (NVO)

Summary

- TeraGrid offers Science Gateways the ability to extend their compute power on demand.
- Supporting Science Gateways is important to the TeraGrid.
- TeraGrid is starting to work closely with ~10 Science Gateway communities to define and implement common services.

Prototype gateways deployed in ~1 year

Portal Example: The TeraGrid Portal!

PITTSBURG

SUPERCOMPUTING C E N T E R

ΤE		My Workspace								Sep 12,	2004	01:55 pm
Home	Gpir Browser											Help
Membership	Note: This portlet rea	nuires an external servic	a (GDIR) to b	e installed	and configu	rad ha	fore it c:	on he us	od Di	0260 00	neult t	he help
Schedule	documentation for further details.											
Resources	Systems View <u>Grid View</u>											
Proxy Manager	High Performance Computing Resources											
TeraGrid CVS						Dook N	Memory	Diek				
TeraGrid UserInfo	Institution	<u>Dept</u>	Name	<u>System</u>	CPUs G	Flops	GBytes	<u>GBytes</u>	Motd	<u>Status</u> <u>I</u>	Load	<u>Jobs</u>
TeraGrid Monitor	<u>The University of</u> <u>Texas at Austin</u>	Texas Advanced Computing Center	<u>Bandera</u>	Dell Linux Cluster	8	25	8	365	Q	•	0%	<u>0R- 0Q-</u> 00
TeraGrid INCA	<u>The University of</u> <u>Texas at Austin</u>	Texas Advanced Computing Center	Blanco	Dell Linux Cluster	8	25	8	365	Q	٠	0%	<u>0R- 0Q-</u> 00
TeraGrid Networks	<u>The University of</u> <u>Texas at Austin</u>	Texas Advanced Computing Center	Buda	Dell Linux Cluster	8	25	8	365	Q	٠	0%	<u>0R- 0Q-</u> 00
TeraGrid Bug Tracking												
Newsgroup (Read/Post)	Visualization Resources											
Newsgroup (Request)	Institution	Dept	<u>Name</u>	<u>S</u>	ystem	<u>CPUs</u>	<u>Peak</u> GFlops	Memory GBytes	<u>Dis</u> <u>GByte</u>	<u>sk</u> S Motd	<u>Statu</u>	<u>s</u>
Systems View	Test Universit	y Test Computing Cente	r <u>TestResou</u>	rce10000 T	est System	5	55	55	55	5 Q		
Logout												
Customize	j		Arc	chival Sy	stems							
Eric Roberts							<u>Cache</u>	<u>Storage</u>	1			
H			Stevenso	n, WA				TE	R		۶F	RIC

19

Grid Networking Status

Sep 12, 2004 01:56 pm TERAGRID My Workspace **Gpir Browser** Home Help Systems View | Grid View Membership Total Statistics Schedule Resources Total Processors: 29 Proxy Manager Total Nodes: 16 Total Peak Performance (GFlops): 130 TeraGrid CVS Total Memory (GBytes): 79 TeraGrid Total Scratch Disk (GBytes): 1650 UserInfo Total Offline Disk Space (GBytes): 555 TeraGrid Total Online Disk Space (TBytes): 555 Monitor Total Peak Polygons (MPoly/sec): 55 TeraGrid INCA TeraGrid Networks Network Performance TeraGrid Bug Tracking bandera blanco buda test10000 test9000 Newsgroup 931.56476 863.8969 bandera N / A (Read/Post) 0.094 0.745 Newsgroup 912.65924 934.9154 blanco N / A (Request) 0.765 0.091 875.6196 871.46454 Systems View buda N/A 0.76 0.761 test10000 N / A Logout ---test9000 N/A ----Customize Eric Roberts

Manage Proxies

xportlets : ProxyManager	Help
The following GSI proxy credentials into your account:	are loaded
(default /C=US/O=UTAustin/OU=TACC/CN=Eric proxy) Roberts/UID=ericrobe	View Remove
Click the button below to add anothe credential to your account:	er GSI proxy
Get New Proxy	

Remote Command Execution

XPortlets: Gram 1	lob Launcher	<mark>∕</mark> Help
Launch a Grar	n Job	
Executable name		
Parameters		
Host name *		
Executable Directory		
Output file *		
Launch Gram Job		

22

Job Submission

PITTSBURGH SUPERCOMPUTING CENTER

Grid Job Su	ubmission Portlet 🖉
Monitor sub	mitted jobs
Job name	
Host name	rainier.extreme.indiana.edu
Port	7512
Certificate to use	/C=US/0=UTAustin/OU=TACC/CN=Eric Roberts/UID=ericrobe
	Note: If you don't see all your certificates above, that means some of them have expired
Executable	
Arguments	
Directory:	
Standard Output File	
Standard Error File	
	Run Job

File Management

xportlets : GridFTP Client	
Gr	id FTP Client
One Host Only One Host Only One Hosts	
Please specify the Grid FTP Host 1:	
lonestar.tacc.utexas.edu Port: 2811	
Please specify Grid FTP Host 2, if you choose "Two Hosts":	
longhorn.tacc.utexas.edu Port: 2811	
Enter	

TeraGrid Resources

PITTSBURGH SUPERCOMPUTING CENTER

	ANL/UC	Caltech	IU	NCSA	ORNL	PSC	Purdue	SDSC	TACC
Compute Resources	Itanium2 (0.5 TF) IA-32 (0.5 TF)	Itanium2 (0.8 TF)	Itanium2 (0.2 TF) IA-32 (2.0 TF)	Itanium2 (10 TF) SGI SMP (6.5 TF)	IA-32 (0.3 TF)	XT3 (10 TF) TCS (6 TF) Marvel (0.3 TF)	Hetero (1.7 TF)	Itanium2 (4.4 TF) Power4 (1.1 TF)	IA-32 (6.3 TF) Sun (Vis)
Online Storage	20 TB	155 TB	32 TB	600 TB	1 TB	150 TB		540 TB	50 TB
Mass Storage			1.2 PB	3 PB		2.4 PB		6 PB	2 PB
Data Collections			Yes	Yes			Yes	Yes	Yes
Visualization	Yes		Yes			Yes	Yes		Yes
Instruments		Yes	Yes		Yes				
Network (Gb/s,Hub)	30 CHI	30 LA	10 CHI	30 CHI	10 ATL	30 CHI	10 CHI	30 LA	10 CHI

25

TeraGrid Resource Partners

