
default

Crustal Deformation Modeling Tutorial
PyLith and CUBIT/Trelis Refresher

Brad Aagaard
Charles Williams
Matthew Knepley

June 23, 2014

default

Crustal Deformation Modeling
Elasticity problems where geometry does not change significantly

Quasi-static modeling associated with earthquakes

Strain accumulation associated with interseismic deformation
What is the stressing rate on faults X and Y?
Where is strain accumulating in the crust?

Coseismic stress changes and fault slip
What was the slip distribution in earthquake A?
How did earthquake A change the stresses on faults X and Y?

Postseismic relaxation of the crust
What rheology is consistent with observed postseismic
deformation?
Can aseismic creep or afterslip explain the deformation?

PyLith Overview

default

Crustal Deformation Modeling
Elasticity problems where geometry does not change significantly

Dynamic modeling associated with earthquakes

Modeling of strong ground motions
Forecasting the amplitude and spatial variation in ground
motion for scenario earthquakes

Coseismic stress changes and fault slip
How did earthquake A change the stresses on faults X and Y?

Earthquake rupture behavior
What fault constitutive models/parameters are consistent with
the observed rupture propagation in earthquake A?

PyLith Overview

default

Crustal Deformation Modeling
Elasticity problems where geometry does not change significantly

Volcanic deformation associated with magma chambers and/or
dikes

Inflation
What is the geometry of the magma chamber?
What is the potential for an eruption?

Eruption
Where is the deformation occurring?
What is the ongoing potential for an eruption?

Dike intrusions
What is the geometry of the intrusion?
What is the pressure change and/or amount of
opening/dilatation?

PyLith Overview

default

Crustal Deformation Modeling
Overview of workflow for typical research problem

Geologic
Structure

Mesh
Generation

Physics
Code

Visualization

Gocad

Earth Vision

CUBIT/Trelis

LaGriT

TetGen

Gmsh

PyLith

Relax

GeoFEST

Abaqus

ParaView

Visit

Matlab

Matplotlib

GMT

CIG

Open Source

Free

Commercial

Available

Planned

PyLith Overview

default

PyLith

Developers
Brad Aagaard (USGS, lead developer))
Charles Williams (GNS Science, formerly at RPI)
Matthew Knepley (Univ. of Chicago, formerly at ANL)

Combined dynamic modeling capabilities of EqSim (Aagaard)
with the quasi-static modeling capabilities of Tecton (Williams)
Use modern software engineering (modular design, testing,
documentation, distribution) to develop an open-source,
community code

PyLith Overview

default

Governing Equations

Elasticity equation

σij,j + fi = ρü in V , (1)
σijnj = Ti on ST , (2)

ui = u0
i on Su, and (3)

Rki(u+
i − u−

i) = dk on Sf . (4)

Multiply by weighting function and integrate over the volume,

−
∫

V
(σij,j + fi − ρüi)φi dV = 0 (5)

After some algebra,

−
∫

V
σijφi,j dV +

∫
ST

Tiφi dS +

∫
V

fiφi dV −
∫

V
ρüiφi dV = 0 (6)

PyLith Governing Equations

default

Discretize Domain Using Finite Elements
PyLith v2.0.0 uses interpolated meshes

Interpolated triangular mesh

7

8

9

10

2

3

4

5

6

0 1

Vertices

Edges

Cells

7 8 9 10

2 3 4 5 6

0 1

Interpolated quadrilateral mesh

9

10

11

12

13

14

2

3

4

5

6

7

80 1

9 10 11 12 13 14

2 3 4 5 6 7 8

0 1

Optimized triangular mesh

2

3

4

50 1

Vertices

Cells

2 3 4 5

0 1

Optimized quadrilateral mesh

2

3

4

5

6

7

0 1

2 3 4 5 6 7

0 1

PyLith Governing Equations

default

Governing Equations

Using numerical quadrature we convert the integrals to sums over
the cells and quadrature points

−
∑

vol cells

∑
quad pts

σijNn
,j wq|Jcell|+

∑
surf cells

∑
quad pts

TiNnwq|Jcell|

+
∑

vol cells

∑
quad pts

fiNnwq|Jcell|

−
∑

vol cells

∑
quad pts

ρ
∑

m

äm
i NmNnwq|Jcell| = ~0 (7)

PyLith Governing Equations

default

Quasi-static Solution
Neglect inertial terms

Form system of algebraic equations

A(t)~u(t) = ~b(t) (8)

where

Anm
ij (t) =

∑
vol cells

∑
quad pts

1
4

Cijkl(t)(Nm
,l + Nm

,k)(N
n
,j + Nn

,i)wq|Jcell| (9)

bi(t) =
∑

surf cells

∑
quad pts

Ti(t)Nnwq|Jcell|+
∑

vol cells

∑
quad pts

fi(t)Nnwq|Jcell|

(10)

and solve for ~u(t).

PyLith Governing Equations

default

Fault Interface
Fault tractions couple deformation across interface

Sf+
Sf-

n

u+,T+

u-,T-

PyLith Fault Implementation

default

Implementation: Fault Interfaces
Use cohesive cells to control fault behavior

(a) Original mesh

fault vertex

fault edge vertex

n

(b) Add colocated
vertices

Sf− Sf+

Original fault vertex
(negative side)

Add Lagrange
multiplier edge

Add vertex on
positive side

(c) Update cells with
fault faces

-

-

-

+

+

+

Cell on
negative
side

Cell on
positive
side

(d) Classify cells and
update remaining
cells

-

-

-

-

-

-

+

+

+

+

+

+

PyLith Fault Implementation

default

Fault Implementation: Governing Equations
Terms in governing equation associated with fault

Tractions on fault surface are analogous to boundary tractions

. . . +

∫
ST

~φ · ~T dS −
∫

Sf+

~φ ·~l dS +

∫
Sf−

~φ ·~l dS . . . = 0

Neumann BC Fault + Fault -

Constraint equation relates slip to relative displacement∫
Sf

~φ · (~d } − (~u+ − ~u−))dS = 0

Slip Relative Disp.

PyLith Fault Implementation

default

Fault Slip Implementation
Use Lagrange multipliers to specify slip

System without cohesive cells
Conventional finite-element elasticity formulation

A~u = ~b

Fault slip associated with relative displacements across fault

C~u = ~d

System with Lagrange multiplier constraints for fault slip(
A CT

C 0

)(
~u
~l

)
=

(
~b
~d

)
Prescribed (kinematic) slip
Specify fault slip (~d) and solve for Lagrange multipliers (~l)
Spontaneous (dynamic) slip
Adjust fault slip to be compatible with fault constitutive model

PyLith Fault Implementation

default

Implementing Fault Slip with Lagrange multipliers

Advantages
Fault implementation is local to cohesive cell
Solution includes tractions generating slip (Lagrange
multipliers)
Retains block structure of matrix, including symmetry
Offsets in mesh mimic slip on natural faults

Disadvantages
Cohesive cells require adjusting topology of finite-element
mesh
Scalable preconditioner/solver is more complex

PyLith Fault Implementation

default

Workflow for Running PyLith

PyLith

Mesh Generator Simulation Parameters

Visualization

Post-processing

CUBIT
/ Trelis

Exodus file

[.exo]

LaGriT

GMV File

[.gmv]

Pset File

[.pset]

Text Editor

ASCII File

[.mesh]

Text Editor

Parameter

File(s)

[.cfg]

Spatial

Database(s)

[.spatialdb]

VTK File(s)

[.vtk]

HDF5 File(s)

[.h5]

Xdmf File(s)

[.xmf]

ParaView Visit

Python
w/h5py

Matlab

PyLith Running PyLith

default

Spatial Databases
User-specified field/value in space

Examples
Uniform value for Dirichlet (0-D)
Piecewise linear variation in tractions for Neumann BC (1-D)
SCEC CVM-H seismic velocity model (3-D)

Generally independent of discretization for problem
Available spatial databases
UniformDB Optimized for uniform value
SimpleDB Simple ASCII files (0-D, 1-D, 2-D, or 3-D)

SCECCVMH SCEC CVM-H seismic velocity model v5.3
ZeroDispDB Special case of UniformDB

PyLith Running PyLith

default

Features in PyLith 2.0
Complete rewrite of finite-element data structures

Time integration schemes and elasticity formulations
Implicit for quasistatic problems (neglect inertial terms)

Infinitesimal strains
Small strains

Explicit for dynamic problems
Infinitesimal strains
Small strains
Numerical damping via viscosity

Bulk constitutive models (2-D, and 3-D)
Elastic model
Linear Maxwell viscoelastic models
Generalized Maxwell viscoelastic models
Power-law viscoelastic model
Drucker-Prager elastoplastic model

PyLith Features

default

Features in PyLith 2.0 (cont.)

Boundary and interface conditions
Time-dependent Dirichlet boundary conditions
Time-dependent Neumann (traction) boundary conditions
Absorbing boundary conditions
Kinematic (prescribed slip) fault interfaces w/multiple ruptures
Dynamic (friction) fault interfaces
Time-dependent point forces
Gravitational body forces

Fault constitutive models
Static friction
Linear slip-weakening
Linear time-weakening
Dieterich-Ruina rate and state friction w/ageing law

PyLith Features

default

Features in PyLith 2.0 (cont.)

Automatic and user-controlled time stepping
Ability to specify initial stress/strain state
Importing meshes

LaGriT: GMV/Pset
CUBIT: Exodus II
ASCII: PyLith mesh ASCII format (intended for toy problems
only)

Output: VTK and HDF5 files
Solution over volume
Solution over surface boundary
Solution interpolated to user-specified points
State variables (e.g., stress and strain) for each material
Fault information (e.g., slip and tractions)

Automatic conversion of units for all parameters
Parallel uniform global refinement
PETSc linear and nonlinear solvers

Custom preconditioner with algebraic multigrid solver

PyLith Features

default

PyLith Development
See PyLith User Resources for detailed development plan

Immediate priorities [in progress]
New fault implementation for spontaneous rupture
Much faster convergence for quasi-static simulations
Improved handling of fault intersections

Short-term priorities
Under-the-hood improvements

Support higher order basis functions [in progress]
Provides much higher resolution for a given mesh
Multigrid nonlinear solver [in progress]
Prepare for multi-physics

Multi-cycle earthquake modeling
Resolve interseismic, coseismic, and postseismic deformation

Coupling solvers for quasistatic and dynamic deformation
Adaptive time stepping

Multiphysics: Elasticity + Fluid flow + Heat flow
Scaling to 1000 cores

PyLith Features

default

PyLith Development
Planned Releases

v2.1 (Summer 2014)
New fault implementation for spontaneous rupture
Improved handling of fault intersections

v3.0 (Early 2015)
Support for higher order basis functions
Adaptive time stepping

v3.1 (Mid-Late 2015)
Support for incompressible elasticity
Heat and fluid flow coupled to elastic deformation

PyLith Features

default

Design Philosophy
Modular, extensible, and smart

Code should be flexible and modular
Users should be able to add new features without modifying
code, for example:

Boundary conditions
Bulk constitutive models
Fault constitutive models

Input/output should be user-friendly
Top-level code written in Python (expressive, dynamic typing)
Low-level code written in C++ (modular, fast)

PyLith Architecture

default

PyLith Design: Focus on Geodynamics
Leverage packages developed by computational scientists

PyLith

spatialdataPETSc FIAT

Proj.4HDF5NetCDF Pyre numpy

MPIBLAS/LAPACK

PyLith Architecture

default

PyLith Application Flow

PyLithApp
main()

mesher.create()

problem.initialize()

problem.run()

TimeDependent (Problem)
initialize()

formulation.initialize()

run()

while (t < tEnd)

dt = formulation.dt()

formulation.prestep(dt)

formulation.step(dt)

formulation.poststep(dt)

Implicit (Formulation)
initialize()

prestep()

set values of constraints

step()

compute residual

solve for disp. incr.

poststep()

update disp. field

write output

PyLith Architecture

default

PyLith as a Hierarchy of Components
Components are the basic building blocks

���������

������

����

���

����������

����������

������������������

����������

��������

PyLith Architecture

default

PyLith as a Hierarchy of Components
PyLith Application and Time-Dependent Problem

���������

����������

����������

����

��������������

�������

�����

�������������

����������

����������

���������

����������

���������

��

����������

�������������

�����������

PyLith Architecture

default

PyLith as a Hierarchy of Components
Fault with kinematic (prescribed slip) earthquake rupture

FaultCohesiveKin

properties

facilities

id

name

up_dir

normal_dir

quadrature

eq_srcs

output

EqKinSrc

properties

facilities

origin_time

slip_function

PyLith Architecture

default

PyLith as a Hierarchy of Components
Diagram of simple toy problem

PyLith Architecture

default

PyLith as a Hierarchy of Components

PyLith Architecture

default

Unit and Regression Testing
Automatically run more than 1800 tests on multiple platforms whenever code is
checked into the source repository.

Create tests for nearly every function in code during
development

Remove most bugs during initial implementation
Isolate and expose bugs at origin

Create new tests to expose reported bugs
Prevent bugs from reoccurring

Rerun tests whenever code is changed
Code continually improves (permits optimization with quality
control)

Binary packages generated automatically upon successful
completion of tests
Additional full-scale parallel regression tests are run before
releases

PyLith Testing

default

Mesh Generation Tips
There is no silver bullet in finite-element mesh generation

Hex/Quad versus Tet/Tri
Hex/Quad are slightly more accurate and faster
Tet/Tri easily handle complex geometry
Easy to vary discretization size with Tet, Tri, and Quad cells
There is no easy answer
For a given accuracy, a finer resolution Tet mesh that varies
the discretization size in a more optimal way might run faster
than a Hex mesh

Check and double-check your mesh
Were there any errors when running the mesher?
Are the boundaries, etc marked correctly for your BC?
Check mesh quality (aspect ratio should be close to 1)

CUBIT/Trelis General

default

CUBIT Workflow

1 Create geometry
1 Construct surfaces from points, curves, etc or basic shapes
2 Create domain and subdivide to create any interior surfaces

Fault surfaces must be interior surfaces (or a subset) that
completely divide domain
Need separate volumes for different constitutive models, not
parameters

2 Create finite-element mesh
1 Specify meshing scheme
2 Specify mesh sizing information
3 Generate mesh
4 Smooth to fix any poor quality cells

3 Create nodesets and blocks
1 Create block for each constitutive model
2 Create nodeset for each BC and fault
3 Create nodeset for buried fault edges
4 Create nodeset for ground surface for output (optional)

4 Export mesh in Exodus II format (.exo files)

CUBIT/Trelis General

default

CUBIT/Trelis Issues
Keep in mind the scales of the observations you are modeling

Topography/bathymetry
Ignore topography/bathymetry unless you know it matters
For rectilinear grid, create UV net surface
Convert triangular facets to UV net surface via mapped mesh

Fault surfaces
Building surfaces from contours is usually easiest
Include features at the resolution that matters

Performance
Number of points in spline curves/surfaces has huge affect on
mesh generation runtime
CUBIT/Trelis do not run in parallel
Use uniform global refinement in PyLith for large sims (>10M
cells)

CUBIT/Trelis General

default

CUBIT/Trelis Best Practices

Issue: Changes in geometry cause changes in object ids
Soln: Name objects and use APREPRO or Python to

eliminate hardwired ids wherever possible

Issue: Splines with many points slows down operations
Soln: Reduce the number of points per spline

Issue: Surfaces meet in small angles creating distorted cells
Soln: Trim geometry to eliminate features smaller than cell

size

Issue: Difficulty meshing complex geometry with Hex cells
Soln: Use Tet cells even if it requires a finer mesh

Issue: Hex mesh over-samples parts of the domain
Soln: Use Tet mesh and vary discretization within domain

Issue: Extended surfaces create very complex geometry
Soln: Subdivide geometry before webcutting to eliminate

overly complex geometry
CUBIT/Trelis General

default

General Numerical Modeling Tips
Start simple and progressively add complexity and increase resolution

Start in 2-D, if possible, and then go to 3-D
Much smaller problems⇒ much faster turnaround
Start with an exact solver
Experiment with meshing, boundary conditions, solvers, etc
Keep in mind how physics differs from 3-D

Start with coarse resolution and then increase resolution
Much smaller problems⇒ much faster turnaround
Start with an exact solver
Experiment with meshing, boundary conditions, solvers, etc.
Increase resolution until solution resolves features of interest

Resolution will depend on spatial scales in BC, initial conditions,
deformation, and geologic structure
Is geometry of domain important? At what resolution?
Displacement field is integral of strains/stresses
Resolving stresses/strains requires fine resolution simulations

Use your intuition and analogous solutions to check your
results!

Troubleshooting General

default

PyLith Tips

Read the PyLith User Manual
Do not ignore error messages and warnings!
Use an example/benchmark as a starting point
Quasi-static simulations

Start with a static simulation and then add time dependence
Check that the solution converges at every time step

Dynamic simulations
Start with a static simulation
Shortest wavelength seismic waves control cell size

CIG Short-Term Crustal Dynamics mailing list
cig-short@geodynamics.org

PyLith User Resources
http://wiki.geodynamics.org/software:pylith:start

Troubleshooting PyLith

default

PyLith Debugging Tools

pylithinfo [--verbose] [PyLith args]

Dumps all parameters with their current values to text file
Command line arguments

--help

--help-components

--help-properties

--petsc.start in debugger (run in xterm)
--nodes=N (to run on N processors on local machine)

Journal info flags turn on writing progress
[pylithapp.journal.info]

timedependent = 1

Turns on/off info for each type of component independently
Examples turn on writing lots of info to stdout using journal
flags

Troubleshooting PyLith

default

Getting Started

Read the PyLith User Manual
Work through the examples

Chapter 7 of the PyLith manual
Input files are provided with the PyLith binary
src/pylith-2.0.0/examples

Input files are provided with the PyLith source tarball
src/examples

Modify an example to look like a problem of interest

Troubleshooting PyLith

	PyLith
	Overview
	Governing Equations
	Fault Implementation
	Running PyLith
	Features
	Architecture
	Testing

	CUBIT/Trelis
	General

	Troubleshooting
	General
	PyLith

