Contributions of Upper Mantle Rheology, Afterslip and Poroelasticity to the Viscoelastic Postseismic Deformation of the 2011 Tohoku Earthquake

Yan Hu

Roland Bürgmann (UC Berkeley) Jeff Freymueller (UA Fairbanks) Paramesh Banerjee (NTU, Singapore) Naoki Uchida and Toru Matsuzawa (Tohoku University, Japan) Kelin Wang (PGC&UVic, Canada)

CIG, 06/25/2014

Outline

- 1. Background of Earthquake Cycle Deformation
- 2. Finite Element Model of 2011 Tohoku Earthquake
- 3. Systematic Tests on Rheological Properties
- 4. Three-dimensional Heterogeneity of Upper Mantle Rheology
 - Subduction of the Philippine Sea plate
 - Weak lower crust beneath the arc
 - Weak asthenosphere beneath the oceanic lithosphere
- 5. Poroelastic Rebound of the Top Crust

Viscoelastic

Elastic

Time-independent plasticity (shallow depths)

Earthquake rupture	Post-seismic deformation		Earthquake cycle		Post-glacial rebound		Mantle convection	
seconds	 years	decade	s cent	uries	mille	ennia	millior yea	ns of Irs

Japan and Sumatra: shortly after a great earthquake

All sites move seaward

Alaska and Chile: ~ 40 years after a great earthquake: Opposing motion of coastal and inland sites

Cascadia: ~ 300 years after a M ~ 9 earthquake:

All sites move landward

Processes After a Great Earthquake

Earthquake Cycle = Rupture +(1) + (2) + (3)

Postseismic Deformation Following the 2011 Tohoku Earthquake

Postseismic Deformation Following the 2011 Tohoku Earthquake

Processes After a Great Earthquake

Major Challenges:

- 1. How do we distinguish the effects of afterslip and transient relaxation of mantle?
- 2. How do we eliminate the model ambiguities?

Afterslip of the Megathrust

Afterslip Simulated by Weak Shear Zone

Shear zone viscosity: 10¹⁷ – 10¹⁸ Pa s Continental mantle viscosity: ~10¹⁹ Pa s

Locked Regions of the Megathrust

Finite Element Model

Conceptual representation of the subduction zone model. Modelling code is written by *J. He*, Geological Survey of Canada, Pacific Geoscience Centre, Canada.

Central Part of the Finite Element Mesh and Slip Assignment

Coastlines: thick white lines Land GPS sites: red dots Marine GPS sites: black dots (Coseismic slip from *linuma et al.*, 2012)

Offshore Repeating Earthquakes

(Uchida & Matsuzawa, 2013)

1984-2011.12.31 repeaters Red : both before and after M9 Yellow: only before M9

Shallow Shear Zone Viscosities Constrained From Repeating Earthquakes

Shallow shear zone (\leq 50 km): Steady-state (Maxwell) viscosity: $\eta_M = 10^{17}$ Pa s Transient (Kelvin) viscosity: $\eta_K = 10^{16}$ Pa s

Variable Model Parameters

Mantle Wedge: steady-state viscosity $\eta_M \ 10^{18} - 10^{20}$ Pa s (transient viscosity $\eta_K = \eta_M/10$) Oceanic mantle: $\eta_M \ 10^{18} - 10^{22}$ Pa s ($\eta_K = \eta_M/10$) Deep shear zone: $\eta_M \ 10^{17} - 10^{20}$ Pa s ($\eta_K = \eta_M/10$)

Systematic Tests on Rheological Properties

Systematic Tests on Rheological Properties

Systematic Tests on Viscosity Range

Residual of Selected Test models

Systematic Tests on Viscosity Range

Viscosity Range

Mantle Wedge: 7x10¹⁸ - 5x10¹⁹ Pa s

Oceanic Mantle: 5x10¹⁹ – 5x10²⁰ Pa s

Deep shear zone: 10¹⁷ – 5x10¹⁸ Pa s

Effects of Deep Shear Zone on Surface Deformation

Effects of Mantle Wedge on Surface Deformation

Effects of Oceanic Mantle on Surface Deformation

Contributions of Viscoelastic Relaxation and Afterslip

Comparison of GPS With Best-fit Model

Comparison of GPS Time-series With Best-fit Model

Distribution and Evolution of Afterslip

Surface Deformation at Future Times

Effects of Different Source Models

Effects of the Elastic Subducting PHS Slab

Residual of Best-fit Model

Afterslip of PHS and PAC Derived from Repeating Earthquakes

(data courtesy of N. Uchida)

Afterslip of the PHS Slab

Surface Deformation due to Afterslip of PHS

Surface Thermal Gradient in NE Japan

(Muto et al., 2013)

Finite Element Model of Weakened Zone Beneath the Arc

Steady-state viscosity of the weakened zone:

In the transition zone: $10^{23} - 10^{18}$ Pa s Weak zone: 10^{18} Pa s

Effects of Weak Sub-arc Zone

Structure of the Oceanic Mantle

Effects of Weak Asthenosphere

Poroelastic Rebound

Continental crust: Shear modulus μ : 15 Gpa Undrained Poisson's ratio v_u : 0.34 Drained Poisson's ratio v: 0.25 Oceanic crust (slab): μ: 20 Gpa υ_u: 0.31 υ: 0.25

Poroelastic Rebound

Conclusion

- 1. Time-dependent, stress-driven afterslip of the fault may be simulated through the viscoelastic relaxation of a weak shear zone attached to the fault.
- The viscosity of the shallow shear zone (≤50 km) is at orders of 10¹⁷ Pa s, constrained by the repeating earthquakes. Deeper shear zone has a viscosity of ~10¹⁸ Pa s.
- 3. Viscosities of the mantle wedge and oceanic mantle is determined to be 10¹⁹ Pa s and 10²⁰ Pa s, respectively.

Conclusion

- 4. Contributions of the subducting Philippine Sea plate to the surface deformation is negligible.
- 5. Weak lower crust beneath the arc improves the fit to GPS observations on land. A weak asthenosphere beneath the oceanic lithosphere produces landward and subsidence motion offshore.
- 6. Poroelastic rebound in the continental and oceanic crust produces uplift and subsidence in the rupture zone, respectively.

Separating Misfit of Far-field, Land, and Marine GPS

Shallow Shear Zone Viscosities Constrained From Repeating Earthquakes

Shallow shear zone (\leq 50 km): Steady-state (Maxwell) viscosity: $\eta_M = 10^{17} \text{ Pa s} (5 \times 10^{16} - 5 \times 10^{17})$ Transient (Kelvin) viscosity: $\eta_K = 10^{16} \text{ Pa s} (5 \times 10^{15} - 5 \times 10^{16})$

Giant Earthquakes in Last Century

Poroelastic Rebound

PE at Continental Side

PE at Oceanic Side

PE in Continental and Oceanic Crust of Different Source Models

Rheology Structure Beneath the Volcanic Arc

(Muto, 2011; Muto et al., 2013)

Variation in the plan-view width of the weak zone

40°N 40°N 38°N 38°N 50 km 50 km lode 20 cm 36°N -36°N lodel 20 cm (a) BD = 40.0 km (b) BD = 60.0 km 144°E 144°E 140°E 142°E 140°E 142°E 40°N 40°N 38°N 38°N 50 km 50 km 36°N lode 20 cm 36°N lodel 20 cm (d) BD = 100.0 km (c) BD = 80.0 km 144°E 144°E 140°E 142°E 142°E 140°E -20 -15 -10 -5 5 10 15 0 Vertical (cm)

Variation in the bottom depth (BD) of the weak zone

Different Viscosity in the Sub-arc Weak Zone

Pre-earthquake linear and seasonal trends

Postseismic deformation corrected for preearthquake trends

Cartoon Showing Different Rheologies

Stress Evolution of the Megathrust

Laboratory-observed Rock Deformation

Coseismic Slip Distribution and Assignment of Locking Motion

⁽*Hu et al.*, 2004)