Ductile roots of mature strike-slip faults: Integrating field and laboratory observations with numerical models

Yuri Flalko

Institute of Geophysics and Planetary Phy Scripps Institution of Oceanography University of California San Diego

Field geology & laboratory view of a major crustal fault

Scholz, 1988

Ductile softening mechanisms

- Thermo-mechanical coupling
- Grain size reduction
- Foliation / fabric development
- Mineral alteration
- Pressure solution

. . .

All lead to the development of shear zones and strength reduction

Surface velocity due to a strike-slip fault

"Fault-block vs Viscous sheet" "Crème Brûlée vs Jelly Sandwich" "Bottom-driven vs Side-driven"

> Geodetic slip rates and fault locking depths depend on model assumptions

Difference between the models results from oversimplified model assumptions?

> Li and Rice, 1987 Johnson and Segall, 2004

Savage and Burford, 1973 Turcotte and Spence, 1974

Elsasser, 1969 Savage and Prescott, 1978

 \odot

 \odot

 \odot

 \odot

 \odot

 \odot

Earthquake cycles on a rate-and-state fault

Tse and Rice, 1987 Lapusta et al., 2001

VS

Governing equations

$$\sigma_{ij,j} = 0$$
 conservation of momentum

$$\left(kT_{,i}\right)_{,i} + \sigma_{ij}\dot{\varepsilon}_{ij} = c\rho\dot{T}$$

conservation of energy

$$\dot{\varepsilon}_{ij} = F(\sigma_{ij})$$
 constitutive relationship

$$\dot{\varepsilon} = \dot{\varepsilon}_e + \dot{\varepsilon}_v = \frac{1}{2\mu}\dot{\sigma} + \frac{1}{2\eta(\sigma,T)}\sigma$$

elastic

viscous

Effective rheology $\dot{\varepsilon}_{v} = \dot{\varepsilon}_{D} + \dot{\varepsilon}_{G} = A_{D}\sigma^{n_{D}} + A_{G}d^{-m}\sigma^{n_{G}}$ $\begin{array}{ccc} dislocation & diffusion & n_{D} \sim 3 \\ n_{G} \sim 1 & n_{G} \sim 1 \\ m \sim 3 \\ d = d_{0}\sigma^{-r} & equilibrium \text{ grain size} & r \sim 1 \end{array}$

Assuming that the equilibrium grain size is attained when

 $R = \dot{\varepsilon}_D / \dot{\varepsilon}_G \sim O(1) \qquad \begin{array}{l} \text{de Bresser et al. (1998; 2001)} \\ \text{Montesi and Hirth (2003)} \end{array}$

$$\dot{\varepsilon}_{v} = (1 + 1/R) A_{D}(T) \sigma^{n_{D}}$$

Thermo-mechanical coupling in power-law materials with Arrhenius temperature dependence

Yuen et al., 1978; Fleitout and Frodivaux, 1980; Turcotte and Schubert, 2002 Thermo-mechanical coupling in power-law materials with Arrhenius temperature dependence

Yuen et al., 1978; Fleitout and Frodivaux, 1980; Turcotte and Schubert, 2002 Thermo-mechanical coupling in power-law materials with Arrhenius temperature dependence

width of the shear zone

Rheologic end-members: The Matrix

Shear stress

Distance from fault (km)

Model "spin-up": toward cycle-invariant stress

Constraints from the rock record

Strain rate

Distance from fault (km)

Distance from fault (km)

Surface velocities

Distance from fault (km)

Effect of the model size

Heat flow data

600 km

Pollitz et al., 2000; 2001

Postsesimic velocities due to a finite strike-slip fault

Effective viscosity after 20 Myr spin-up

Takeuchi and Fialko, 2013

Effective rheology $\dot{\varepsilon}_{v} = \dot{\varepsilon}_{D} + \dot{\varepsilon}_{G} = A_{D}\sigma^{n_{D}} + A_{G}d^{-m}\sigma^{n_{G}}$ $\begin{array}{ccc} dislocation & diffusion & n_{D} \sim 3 \\ n_{G} \sim 1 & n_{G} \sim 1 \\ m \sim 3 \\ d = d_{0}\sigma^{-r} & equilibrium \text{ grain size} & r \sim 1 \end{array}$

Assuming that the equilibrium grain size is attained when

 $R = \dot{\varepsilon}_D / \dot{\varepsilon}_G \sim O(1) \qquad \begin{array}{l} \text{de Bresser et al. (1998; 2001)} \\ \text{Montesi and Hirth (2003)} \end{array}$

$$\dot{\varepsilon}_{v} = (1 + 1/R) A_{D}(T) \sigma^{n_{D}}$$

Grain size evolution

$$\dot{\varepsilon}_{v} = \dot{\varepsilon}_{D} + \dot{\varepsilon}_{G} = A_{D}\sigma^{n_{D}} + A_{G}d^{-m}\sigma^{n_{G}}$$

dislocation	diffusion	$n_D \sim 3$
creep	creep	$n_G \sim 1$
		$m \sim 3$

$$\dot{d}_{+} = B_G p^{-1} d^{1-p} \exp\left(-\frac{H}{RT}\right)$$

static grain growth

 $\dot{d}_{-} = -\lambda d\dot{\varepsilon}_{G}$

dynamic recrystallization

de Bresser et al. (1998; 2001) Hall and Parmentier (2003)

Effect of dynamic recrystallization

strain rate

Strain localization at 20 km depth

Foliation

Strain-induced separation of weak and strong mineral phases; development of anisotropic fabric

Aggregate vs individual phase rheologies

flow law parameters from Dimanov and Dresen (1995)

Deformation (and strength) is controlled by the weakest phase

flow law parameters from Dimanov and Dresen (1995)

Where is the transition between frictional sliding and viscous flow?

Scholz, 1988

Calico FZ tomography 34°30' experiment

116°30'W

♦ InSAR data

В

Hamiel and Fialko, 2007

Southern San Andreas: localized vs distributed surface creep

Fault zone architecture

Scholz, 1988; 2002

Conclusions

- Lab-derived rheologies give rise to permanent localization of strain in deep "roots" of major strike-slip faults
- The shear zone width in the ductile substrate inversely depends on the fault slip rate and the effective viscosity of the substrate
- Ductile strength of the lithosphere is of the order of ~50 MPa, only weakly dependent on composition, water content, and geotherm – in good agreement with petrologic data
- Thermally weakened shear zones (result of thermomechanical coupling) have little effect on postseismic deformation