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Earthquake-cycle models incorporating viscous shear zones can resolve a
longstanding conundrum: postseismic vs. interseismic deformation
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1. What am | talking about and why?

2. Modeling!

3. Interseismic velocities, stress and strain
rate, and shear zone creep rate for 3 models

4. A plausible earthquake-cycle model for major
strike-slip fault zones
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The earthquake cycle:
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A conundrum
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Observed interseismic deformation:
velocity profiles look like cycle-average

locked from
surface to
depth D

From GPS and InSAR:
D = maximum coseismic rupture depth,

o = Holocene slip rate, regardless of time
In the seismic cycle.

/ (Wright et al., 2013, Meade et al., 2013)
at depth > D

slipping at Vo
mm/yr

Of course, there are exceptions.



Observed “late” postseismic deformation:

large perturbation
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Postseismic deformation seems to require
low viscosity material

Interseismic deformation seems to require
high viscosity material
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Earthquake-cycle modeling
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Earthquake-cycle modeling
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Earthquake-cycle modeling

top surface: traction-free

bottom surface: free to
displace horizontally

end boundaries: free
to displace parallel
to the fault
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Side boundaries:
Impose velocities

4

Fault:

Impose episodic
coseismic slip or
steady creep

Run for many earthquake
cycles, until cycle-invariant
status is attained

Result: Velocities, strain rates, shear zone creep rates
and (below the brittle upper crust) stresses



Solving the conundrum

 Non-Maxwell viscoelastic material? (e.g. Freed

et al., 2013, Hearn et al., 2009, Takeuchi and Fialko, 2012 and
2013, Pollitz, 2005, Hetland and Hager, 2006, Ryder et al., 2010)

* Burgers
* Power law
» Both, composite....



Solving the conundrum

 Non-Maxwell viscoelastic material? (e.g. Freed

et al., 2013, Hearn et al., 2009, Takeuchi and Fialko, 2012 and
2013, Pollitz, 2005, Hetland and Hager, 2006, Ryder et al., 2010)

* Burgers
* Power law
» Both, composite....

* Thin low-viscosity layer? Stratified? (e.g.,
DeVries and Meade, 2013,Yamasaki and Houseman, 2012, Hetland
and Hager, 2006, Cohen and Kramer, 1984)

* \/iscous shear zone? (e.g., Kenner and Segall, 2003;

Johnson and Segall, 2004; Yamasaki et al., 2014; Takeuchi and
Fialko, 2012 and 2013, Pollitz, 2001 [wide SZ])



My earthquake-cycle models
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My earthquake-cycle models

 \/iscous shear zones and v=0.25

_ Denth throughout/"
relaxing layers ) ( Upper crust
0 is elastic
14 G =30 GPa D|@
. . G =35 GPa
* Non-Maxwell viscoelastic P lo=ssera ||y N
material _|o=soara || Sn/w
G =60 GPa

Finite ruptures

Tc coseis slip | slip rate | Mw L W

300y 6 m 20 mm/y| 7.8 (200 km| 14 km

Shorter and infinite-length ruptures, and different slip per event
were also modeled, not discussed today.

FEM code: GAEA (Saucier and Humphreys, 1992; Palmer, Hearn)



What's in the box?
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Faults are defined at nodes
forming element faces

Assign slip, slip rate or compute stress-driven
slip rate each time step. Use split nodes”.

*Melosh and Raefsky, 1981



Modeling stress-driven fault creep
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« Compute horizontal shear stress on fault-parallel plane
at Gauss point (or points)



Modeling stress-driven fault creep
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Modeling stress-driven fault creep
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« Compute horizontal shear stress on fault-parallel plane
at Gauss point (or points)

» Take average for all elements containing the fault node



Modeling stress-driven viscous fault creep

Finite width shear zone is represented as a
surface in the mesh.

Offset rate at each fault node is calculated
from shear stress at each time step.

U:T(g)

N can vary with stress, position or time.

w



Today: Results from three models
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For a large suite of 2D and 3D models, see Hearn and Thatcher, 2014



Today: Results from three models

Interseismic @
creep >

N, (2
(n/w)

ey l©
®

T]L(Z

(T]/W (2) (©)

1,2

For a large suite of 2D and 3D models, see Hearn and Thatcher, 2014
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Slip velocity below coseismic rupture
as a function of depth and time
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Slip velocity below coseismic rupture
as a function of depth and time
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Slip velocity below coseismic rupture
as a function of position and time



Slip velocity below coseismic rupture
as a function of position and time
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Shear stress below coseismic rupture
as a function of position and time
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Shear stress below coseismic rupture
as a function of position and time
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ns./w = 10'° Pa s/fm]/
ney/w = 10 Pa s/m
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Slip velocity below coseismic rupture
as a function of position and time



Slip velocity below coseismic rupture
as a function of position and time
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Slip velocity below coseismic rupture
as a function of depth and time
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Shear stress below coseismic rupture
as a function of position and time



Shear stress below coseismic rupture
as a function of position and time
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Slip velocity below coseismic rupture
as a function of position and time



Slip velocity below coseismic rupture
as a function of position and time
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Slip velocity below coseismic rupture
as a function of depth and time
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Shear stress below coseismic rupture
as a function of position and time



Shear stress below coseismic rupture
as a function of position and time
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Velocity perturbations throughout the
earthquake cycle: reference models
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Several models can generally represent
postseismic deformation
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Several models can generally represent
postseismic deformation
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Velocity (mm/yr)

Interseismic velocity perturbations
relative to cycle average

28 years

I\ Layered Maxwell model,
60-yr relaxation time
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Velocity (mm/yr)
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Engineering shear strain rate (x 1e-13 /s)
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Engineering shear strain rate (x 1e-13 /s)

Shear strain rate at the fault as
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Shear strain rate at the fault as
a function of time
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Shear strain rate at the fault as
a function of time
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Engineering shear strain rate (x 1e-13 /s)

Two pretty good models

(non-unique)
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this model.

©

Effective 77/ W Increases
from 10" Pa s /m to 5 x
107 Pa s /m with a
characteristic evolution
time of 10 years.

Shear zone transient
viscosity is 5x10'® Pa s
and a width of 5 km

250 (assuming U= 30 GPa).



Engineering shear strain rate (x 1e-13 /s)

Two pretty good models

(non-unique)
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Does the model make sense geologically?
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from the rock physics lab:

¢=15x10"" /s
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Odiff =
differential stress
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Odiff =
differential stress

10710 from model
from the rock physics lab: B ; ' : Q%P'V; —
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Odiff =
differential stress

10 from model 2
from the rock physics lab: 0 = ' ———
| ’ PV
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Model 2 seems roughly
consistent with this rheology
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x Problem: figure is for 875°C.
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SAF low-frequency earthquakes
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* shear stress less than 1000 Pa (0.001 MPa)
lithostatic pore pressure

Inferring fault rheology from low-frequency earthquakes
on the San Andreas

N. M. Beeler,' Amanda Thomas,” Roland Biirgmann,” and David Shelly?
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A new conundrum
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Plausible model for major
continental strike-slip faults

fault| brittle upper crust

n/w ~ 10 Pas/m ”

May increase \ 77 > 10 Pas
interseismically. L

Locally variable?

n/w must be > 10'°Pas/m Moho

In mantle lithosphere.
T =10’s of MPa

mantle asthenosphere

7, =10"° 010" Pas

LAB

Not unlike results of Segall, Johnson and others, based on infinite fault models.



