Reconciling postseismic and interseismic surface deformation around strike-slip faults: Earthquake-cycle models with finite ruptures and viscous shear zones

Elizabeth H. Hearn hearn.liz@gmail.com

Reconciling postseismic and interseismic surface deformation around strike-slip faults: Earthquake-cycle models with finite ruptures and viscous shear zones

Elizabeth H. Hearn hearn.liz@gmail.com

Earthquake-cycle models incorporating viscous shear zones can resolve a longstanding conundrum: postseismic vs. interseismic deformation

Outline

1. What am I talking about and why?

2. Modeling!

- 3. Interseismic velocities, stress and strain rate, and shear zone creep rate for 3 models
- 4. A plausible earthquake-cycle model for major strike-slip fault zones

Idealized interseismic deformation around an infinite, vertical strike-slip fault

The earthquake cycle: idealized surface deformation

The earthquake cycle: idealized surface deformation

"elastic" solution = cycle average

perturbations: see Hetland and Hager, 2006

"elastic" solution = cycle average

perturbations: see Hetland and Hager, 2006

"elastic" solution = cycle average

perturbations: see Hetland and Hager, 2006

"elastic" solution = cycle average

perturbations: see Hetland and Hager, 2006

"elastic" solution = cycle average

perturbations: see Hetland and Hager, 2006

"elastic" solution = cycle average

lower viscosities cause bigger perturbations

perturbations: see Hetland and Hager, 2006

A conundrum

Observed interseismic deformation: velocity profiles look like cycle-average

Observed interseismic deformation: velocity profiles look like cycle-average

From GPS and InSAR: D = maximum coseismic rupture depth, V_o = Holocene slip rate, *regardless of time in the seismic cycle*.

(Wright et al., 2013, Meade et al., 2013)

Of course, there are exceptions.

Observed "late" postseismic deformation: large perturbation

Quake	postseis. / pre- quake rel. rate	When	Distance to maximum	Reference
M 7.5 Izmit	2	4 years	20 km	Ergintav et al., 2009
M 7.8 Kokoxili	2 to 4	2 to 6 years	15 km	Wen et al., 2012
M 7.9 Denali	~5	4 to 7 years	20-50 km	Freymueller et al, 2009 (AGU)

Postseismic deformation seems to require low viscosity material

Interseismic deformation seems to require high viscosity material

Result: Velocities, strain rates, shear zone creep rates and (below the brittle upper crust) stresses

Solving the conundrum

- Non-Maxwell viscoelastic material? (e.g. Freed et al., 2013, Hearn et al., 2009, Takeuchi and Fialko, 2012 and 2013, Pollitz, 2005, Hetland and Hager, 2006, Ryder et al., 2010)
 - Burgers
 - Power law
 - Both, composite....

Solving the conundrum

- Non-Maxwell viscoelastic material? (e.g. Freed et al., 2013, Hearn et al., 2009, Takeuchi and Fialko, 2012 and 2013, Pollitz, 2005, Hetland and Hager, 2006, Ryder et al., 2010)
 - Burgers
 - Power law
 - Both, composite....
- Thin low-viscosity layer? Stratified? (e.g., DeVries and Meade, 2013, Yamasaki and Houseman, 2012, Hetland and Hager, 2006, Cohen and Kramer, 1984)

• Viscous shear zone? (e.g., Kenner and Segall, 2003; Johnson and Segall, 2004; Yamasaki et al., 2014; Takeuchi and Fialko, 2012 and 2013, Pollitz, 2001 [wide SZ])

My earthquake-cycle models

- Viscous shear zones and relaxing layers
- Non-Maxwell viscoelastic material

My earthquake-cycle models

- Viscous shear zones and relaxing layers
- Non-Maxwell viscoelastic material

• Finite ruptures

Тс	coseis slip	slip rate	Mw	L	W
300 y	6 m	20 mm/y	7.8	200 km	14 km

Shorter and infinite-length ruptures, and different slip per event were also modeled, not discussed today.

FEM code: GAEA (Saucier and Humphreys, 1992; Palmer, Hearn)

What's in the box?

material properties are assigned to each element and may evolve

Faults are defined at nodes forming element faces

Assign slip, slip rate or compute stress-driven slip rate each time step. Use split nodes*.

Modeling stress-driven fault creep

 Compute horizontal shear stress on fault-parallel plane at Gauss point (or points)

Modeling stress-driven fault creep

 Compute horizontal shear stress on fault-parallel plane at Gauss point (or points)

Modeling stress-driven fault creep

- Compute horizontal shear stress on fault-parallel plane at Gauss point (or points)
- Take average for all elements containing the fault node

Modeling stress-driven viscous fault creep

Finite width shear zone is represented as a surface in the mesh.

Offset rate at each fault node is calculated from shear stress at each time step.

$$v = \tau(\frac{w}{\eta})$$

 $\frac{\eta}{w}$ can vary with stress, position or time.

Today: Results from three models

For a large suite of 2D and 3D models, see Hearn and Thatcher, 2014

Today: Results from three models

For a large suite of 2D and 3D models, see Hearn and Thatcher, 2014

$\left(1\right)$

Slip velocity below coseismic rupture as a function of depth and time

Slip velocity below coseismic rupture as a function of depth and time

Slip velocity below coseismic rupture as a function of depth and time

Slip velocity below coseismic rupture as a function of position and time

Slip velocity below coseismic rupture as a function of position and time

Shear stress below coseismic rupture as a function of position and time

Shear stress below coseismic rupture as a function of position and time

Slip velocity below coseismic rupture as a function of position and time

Slip velocity below coseismic rupture as a function of position and time

Slip velocity below coseismic rupture as a function of depth and time

Shear stress below coseismic rupture as a function of position and time

Shear stress below coseismic rupture as a function of position and time

Slip velocity below coseismic rupture as a function of position and time

Slip velocity below coseismic rupture as a function of position and time

Slip velocity below coseismic rupture as a function of depth and time

Shear stress below coseismic rupture as a function of position and time

Shear stress below coseismic rupture as a function of position and time

Velocity perturbations throughout the earthquake cycle: reference models

Several models can generally represent postseismic deformation

Layered Maxwell model, 60-yr relaxation time (Savage param. = 5)

Several models can generally represent postseismic deformation

Interseismic velocity perturbations relative to cycle average

Interseismic velocity perturbations relative to cycle average

Interseismic velocity perturbations relative to cycle average

Two pretty good models (non-unique)

 η/w increases from 10¹⁵ Pa s /m to 10¹⁶ Pa s /m at the Moho. Shear zone width is not constrained by this model.

Effective η/w increases from 10¹⁵ Pa s /m to 5 x 10¹⁵ Pa s /m with a characteristic evolution time of 10 years. Shear zone transient viscosity is 5x10¹⁸ Pa s and a width of 5 km 250 (assuming μ = 30 GPa).

Two pretty good models (non-unique)

 η/w increases from 10^{15} Pa s /m to 10^{16} Pa s /m at the Moho. Shear zone width is not constrained by this model.

Does the model make sense geologically?

from the rock physics lab:
$$\dot{\epsilon} = 1.5 \times 10^{-13} \ /s$$
$$\eta = 4 \times 10^{18} Pa \ s$$

from the rock physics lab:
$$\dot{\epsilon} = 1.5 \times 10^{-13} \ /s$$
$$\eta = 4 \times 10^{18} Pa \ s$$

therefore w must be 4 km. does this check out?

from the rock physics lab:
$$\dot{\epsilon} = 1.5 \times 10^{-13} \ /s$$
$$\eta = 4 \times 10^{18} Pa \ s$$

therefore w must be 4 km. does this check out?

SZ creep rate v =
$$6 \times 10^{-10}$$
 m/s
 $\dot{\epsilon} = \frac{v}{2w} = 0.8 \times 10^{-13}$ /s

Model 2 seems roughly consistent with this rheology also, host rock η_o is $10^{21} \ Pa \ s$

Problem: figure is for 875°C.

SAF low-frequency earthquakes

- shear stress less than 1000 Pa (0.001 MPa)
- lithostatic pore pressure

Inferring fault rheology from low-frequency earthquakes on the San Andreas

N. M. Beeler,¹ Amanda Thomas,² Roland Bürgmann,² and David Shelly³

Received 12 February 2013; revised 21 October 2013; accepted 24 October 2013; published 27 November 2013.

A new conundrum

Modified from Getsinger et al., 2013
Plausible model for major continental strike-slip faults

Not unlike results of Segall, Johnson and others, based on infinite fault models.