Introduction to DynEarthSol2D/3D and How to make **Coulomb** angle-oriented shear bands

Eunseo Choi

Center for Earthquake Research and Information University of Memphis

Outline

DynEarthSol2D/3D

- Key algorithmic components of DynEarthSol2D.
- Validation and verification by benchmarks.
- Challenges with 3D extension:
 - parallelization
 - meshing/remeshing.

 Strain localization: How to get shear bands oriented at the Coulomb angle.

Collaborators

Eh Tan Academica Sinica, Taiwan

Luc Lavier University of Texas, Austin

Victor M. Calo KAUST, Saudi Arabia

Byunghyun Jang University of Mississippi

Md. Sabber Ahamed CERI, University of Memphis

Motivations: Desirable Features

- Fast Lagrangian Analysis of Continua (FLAC)
 - Based on algorithms proposed by Cundall (1989).
 - A long list of successful applications.
 - Many variants out there.
 - FYI, one version being maintained as an open source: <u>https://bitbucket.org/tan2/flac</u>
 - OpenMP-parallel. Shows a good scaling.
- Unstructured meshes are often desirable for a wider range of applications and computational efficiency.

- Dynamic Earth Solver for 2D.
- Principle of virtual power

$$0 = \int_{\Omega} \delta \boldsymbol{v} \left(\rho \frac{\partial \boldsymbol{v}}{\partial t} \right) d\Omega - \int_{\Omega} \nabla (\delta \boldsymbol{v}) : \boldsymbol{\sigma} d\Omega - \int_{\Omega} \delta \boldsymbol{v} \rho \boldsymbol{g} d\Omega$$

Discretized momentum equation after the standard FE procedure

$$m_a \mathbf{a}_a = \mathbf{F}_a^{int} + \mathbf{F}_a^{ext}$$

Energy balance equation is discretized similarly.

- Unstructured mesh created by
 - triangle(

http://www.cs.cmu.edu/~quake/triangle.html) in 2D

- tetgen (<u>http://wias-berlin.de/software/tetgen/</u>) in 3D.
- Lagrangian description of motion with explicit time integration.

$$\mathbf{v}_{a}^{(t+\Delta t/2)} = \mathbf{v}_{a}^{(t-\Delta t/2)} + \mathbf{F}_{a}^{(t)} \frac{\Delta t}{m_{a}}$$
$$\mathbf{x}_{a}^{(t+\Delta t)} = \mathbf{x}_{a}^{(t)} + \mathbf{v}_{a}^{(t+\Delta t/2)} \Delta t$$

Dynamic relaxation for (quasi-)static solutions
 Local damping

$$\begin{aligned} v_a^{i,(t+\Delta t/2)} &= v_a^{i,(t-\Delta t/2)} + (F_a^{i,(t)} + F_d^i) \frac{\Delta t}{m_a}, \\ \text{where} \quad F_d^i &= -\alpha |F_a^{i,(t)}| \text{sgn}(v_a^i), \text{ where } 0 \leq \alpha < 1. \end{aligned}$$

• Mass scaling for a large and stable Δt

$$\Delta t < \frac{\Delta x}{v_p}$$
 $v_p = \sqrt{\frac{K}{m_s}}$ $m_s \gg m_g = \int \rho \, dV$

Constitutive model: elasto-visco-plastic

- $\eta \rightarrow \infty$: Mohr-Coulomb plasticity.
- $\sigma_{Y} \rightarrow \infty$: Maxwell viscoelasticity.
- $\eta = \eta(T, \sigma)$: temperature-determined brittle-ductile transition
- $\sigma_{Y} = \sigma_{Y}(\epsilon^{*})$: strain hardening/softening

Remeshing

Remeshing

 Remeshing by edge-flipping and node addition/ subtraction (via *triangle* library by Shewchuk)

Before

After

- Remeshing (cont'd)
 - Fields defined on nodes are easily interpolated.
 - For quadrature-registered fields, we tried one of the conservative mappings: Local supermesh construction (Farrel & Maddison, CMAME, 2011) implemented in Fluidity library (Davies et al., G3, 2011).

- Remeshing (cont'd)
 - Mapping of sharp boundaries: Markers further needed.

Benchmarks: Plastic Oedometer

Benchmarks: Plastic Oedometer

Benchmarks: Rayleigh-Taylor Instability

Benchmarks: Rayleigh-Taylor Instability

Benchmarks: Rayleigh-Taylor Instability

 1st peak of v_{rms} is within the range reported in the benchmark study by Van Keken et al.

Benchmarks: Fault Evolution

- Lamé's constants: 30 GPa.
- More-Coulomb plasticity:
 - Friction angle = 30°
 - Initial Cohesion = 20 Mpa
 - Strain softening:
 - Cohesion 20 → 4 Mpa as pl. strain increases to 5.0.

Benchmarks: Fault Evolution

Benchmarks: Fault Evolution

- Reproduced the "footwall snapping" mode.
- Contingent dynamic mesh refinement along shear zones.

Challenges with 3D version

- Important operations become much slower than in 2D:
 - Remeshing with tetgen \rightarrow Local modification.
 - Local supermesh construction \rightarrow Markers only.
- Parallelization
 - For performance gain with domain decomposition, each time step >> MPI overhead. However, in DynEarthSol3D, each time step < MPI overhead even for a decent size of model.
 - Thread-level parallelism with OpenMP.
 - For massive thread generation, trying out co-processors (e.g., GPGPU and Intel Xeon Phi).

Summary

DynEarthSol2D/3D

- Explicit, Lagrangian FE code for thermo-mechanical modeling.
- Open source:

https://bitbucket.org/tan2/dynearthsol3d https://bitbucket.org/tan2/dynearthsol2d

- Dynamic relaxation and mass scaling for (quasi-) static solutions.
- Unstructured, non-uniform mesh.
- Elasto-visco-plastic base rheology.
- Remeshing for indefinite amount of deformation
 - Contingent dynamic mesh refinement.
- Benchmarked.

 Strain localization is extremely useful for representing discontinuities like faults in continuum models.

Sometimes, we want to predict the orientation of strain localization just as we want to predict fault orientation w.r.t. σ₁.

 π

 ϕ

Coulomb angle

• Roscoe angle
• Arthur angle

$$\theta = \frac{\pi}{4} - \frac{\psi}{2}$$
• Arthur angle

$$\theta = \frac{\pi}{4} - \frac{\psi}{2}$$

Meaning of dilation angle

Fig. 4.2 The model predicts an uplift angle ψ for shear bands.

(Vermeer and de Borst, Heron, 1984) ²⁷

(Bardet, Computers and Geotechnics, 1990) ²⁸

Comparison with experiments

(Bardet, Computers and Geotechnics, 1990) ³⁰

Numerical and analogue models

Numerical Models

Analogue Models

(Buiter et al., 2006) 31

 Numerical models compared with simple theories (Kaus, 2010).

(Kaus, Tectonophysics, 2010) ³³

- We have shear band orientations from theory, experiments and numerical models.
 - theory ≠ experiments : maybe ok (blame theory!)
 - numerical models ≠ experiments: maybe ok, too.
- What about theory ≠ numerical models?
 - e.g.: shear band from the Mohr-Coulomb plasticity ≠ the Coulomb angle
 - Problematic considering models are based on the theory.
 - This type of discrepancy is often termed "mesh dependence".
 - Maybe not a critical issue but certainly inconvenient for some type of analysis.

- As a solution, Kaus (2010) suggested that the key to achieving the Coulomb angle is to resolve inhomogeneity (weak "seed") with sufficiently many elements.
- Often the size of seed and the mesh resolution needs to be independent of each other.
- Still need to understand why models show discrepancy from simple theoretical predictions.

 Strain localization theory: Mohr-Coulomb yield function

$$f(\sigma_1, \sigma_3, \alpha) = (\sigma_1 - \sigma_3) - \sin \phi(\alpha) \left(\sigma_1 + \sigma_3 + \frac{C(\alpha)}{\tan \phi(\alpha)} \right) = 0.$$

 α: Internal variable, a metric (typically, second invariant) of plastic strain.

- Strain localization theory: Hardening modulus $H = \frac{\partial f}{\partial \alpha} = \frac{\partial f}{\partial \phi} \frac{\partial \phi}{\partial \alpha} + \frac{\partial f}{\partial C} \frac{\partial C}{\partial \alpha}$
 - H > 0: strain hardening, H < 0: strain weakening/ softening.

Fig. 6.4 Largely different modes of expansion for the elastic range. (Vermeer and de Borst, Heron, 1984)

- Strain localization theory: Conditions on stress/strain
 - normal traction must be continuous across the shear band boundaries.
 - Don't allow band-parallel strain.

incorrect έ_{xx} ≠0

- Fig. 8.3 a. Uniform deformation up to current state
 - b. Further deformation localized in a shear band
 - c. Incorrect mechanism.

(Vermeer and de Borst, Heron, 1984) ³⁸

From these conditions, we get a relationship between H^* and ϑ :

- In summary, the combination of associated flow rule and modest H is a sufficient condition for Coulomb angle-oriented shear bands.
 - Seems insensitive to mesh resolution and inhomogeneity resolution.
- Caveat: A constant dilation angle means nonstopping expansion of shear band
 - Need to decrease gradually.
 - Might correspond to the process of asperity abrasion.

 Dilation angle reduction also necessary for modeling long-term evolution.

