Improving Scalability of
Sparse Direct Linear Solvers

X. Sherry Li
Lawrence Berkeley National Laboratory

CIG Workshop on Geodynamics and Scientific Computing
UT Austin
October 16-17, 2006

Acknowledgement

o Supports from DOE, NSF

e Collaborators:
— James Demmel, UC Berkeley
— Laura Grigori, INRIA, France
— Ming Gu, UC Berkeley

— Panayot Vassilevski, Lawrence Livermore National Lab
— Jianlin Xia, UCLA

Sparse direct linear solver oo ‘;;1

e Solve Ax=D
— Example: A of dimension 108, only 10 ~ 100 nonzeros per row
— No restriction on sparsity pattern (as opposed to structured
matrices)
e Algorithm: LU factorization: A = LU, followed by
lower/upper triangular solutions
— Store only nonzeros and perform operations only on nonzeros

e Distinctions from dense solvers
— Need to accommodate fill-in elements

— Reorderings to maintain numerical stability, preserve sparsity,
and maximize parallelism: P,AP.T=L U

— Irreqular, indirect memory access; High communication-to-
computation ratio (latency-bound)

Available codes o

« Survey of different types of factorization codes

http://crd.lbl.gov/~xiaoye/SuperLU/SparseDirectSurvey.pdf

— LLT(s.p.d.), LDLT(symmetric indefinite), LU
(nonsymmetric), QR (least squares)

— Sequential, shared-memory, distributed-memory, out-of-
core
 Distributed-memory solvers: usually MPI-based
— SuperLU_DIST [Li, Demmel, Grigori]
» Accessible from PETSc, Trilinos
— MUMPS, PasTiX, WSMP, . ..

SuperLU software status

SuperLU SuperLU_MT SuperLU _DIST
Platform Serial SMP Distributed
Language C C + Pthreads C + MPI
(or pragmas)
Data type Real/complex, | Real, double Real/complex,

Single/double

Double

« With Fortran interface
e SuperLU_MT similar to SuperLU both numerically and

In usage

SuperLU_DIST major steps: -_— i
(parallelization perspectives)

« Static numerical pivoting: improve diagonal dominance

— Currently use MC64 (HSL); Parallelization underway [J.
Riedy]

e Sparsity-preserving ordering
— Can use ParMeTis

« Symbolic factorization: determine pattern of {L\U}
— Being parallelized

 Numerics: factorization, triangular solves, iterative
refinement (usually dominate total time)

— Parallelized a while ago; Need to improve load balance,
latency-hiding

Supernode Gy

« Exploit dense submatrices in the L & U factors

&
. U
; Supernode [6: 9]
L
25
ISI ?I EI B

 Why are they good?
— Permit use of Level 3 BLAS
— Reduce inefficient indirect addressing (scatter/gather)

— Reduce symbolic factorization time by traversing a coarser
graph

Distribute the matrices

e Matrices involved:
— A, B (turned into X) — input, users manipulate them
— L, U—output, users do not need to see them

A (sparse) and B (dense) are distributed by block rows

PO

P1

P2

/)-(XX\X
AT
S

- >4

- Local A stored in
Compressed Row Format

— Natural for users, and consistent with other popular
packages: e.g. PETSc

2D block cyclic layout for {L\U} o)

||||

k Global Matnx Storage of block column of L
1 I I I
index nzval
______________________________ ——
K & i i 0 i] i 2 # of blocks
_____ | : . e _ LDA ionzval
I I
I I
1 39] black # .
| | | #of full ows |
T T T T —
1 1 oW 5u SCHPT.S
I
"""""""""""""""" H i A i2
3¢ 4 15 s

A : : i black # ’ n : : : :
1 1 e ey r-" .." 1 1 | 1
0 ' 2’ | 0 i 2 #of full ows |/ ; m
A IS s S ;
! ! ! row subscripts '
5 030 il
1 1 1 12
i :
0 b2
-~ r=—-"r=-=7| Process Mesh
31415 N

» Good for scalability, load balance

» “Re-distribution” phase to distribute the initial values of A
to the 2D block-cyclic data structure of L & U
— All-to-all communication, entirely parallel
— < 10% of total time for most matrices

Examples

. A
reeeere|)

Name

Application

Data
type

|A] /' N
Sparsity

IL\U|
(10"6)

REELEY LAB -

Fill-ratio

g500

Quantum
Mechanics
(LBL)

Complex

4,235,364

13

3092.6

56.2

matrix181

Fusion,
MHD eqgns
(PPPL)

Real

589,698

161

888.1

9.3

dds15

Accelerator,
Shape
optimization
(SLAC)

Real

834,575

16

526.6

40.2

matick

Circuit sim.
MNA method
(IBM)

Complex

16,019

4005

64.3

1.0

» Sparsity-preserving ordering: MeTis applied to structure of A'+A

10

Performance on IBM Power5 (1.9 GHz) =

Factorization Triangular solution
| —O—matrix181|
| —&—dds15 5 =

| —e—g500

| —9— matrix181
A—dds15 | < ;
e I R o o RO L S WO e, LN

Seconds

10 EEiiiL] L . n Nl - -
8 32 128 256 8 32 128 256
IBM power5 processors IBM power5 processors

* Up to 454 Gflops factorization rate

11

Performance on IBM Power3 (375 MHz) |

N=2M,nnz=26M, nnz(L+U) =1.3 B

- Factor
- Solve

5000 § \ § § |

6000

Seconds
Cd
o
o
o
|

2000 § g ; |

4 16 64 256 1024
IBM Power3 processors

e Quantum mechanics, complex

12

Parallelizing symbolic factorization %

o Serial algorithm is fast (usually < 10% total time) but
requires entire structure of A, limiting memory scalability

« Parallel approach
— Use graph partitioning to reorder/partition matrix.
 ParMetis on structure of A + A’
— Exploit parallelism given by this partition (coarse level) and
by a block cyclic distribution (fine level)
e Summary of results
— Memory: up to 25x reduction of symbolic fact.
up to 5x reduction of the entire solver
— Runtime: up to 14x speedup of symbolic fact.
up to 20% faster of the entire solver

13

Matrix partition) |

e Separator tree
— Balanced tree with balanced data distribution
— Exhibits computational dependencies

* If node j updates node k, then j belongs to subtree rooted
at k.

14

Fluid flow (1/1)

Frreers

EEEEEEEEEEE |

bbmat: n = 38,744, nnz = 1.8 M, 34 M fill-ins using ParMetis on

one processor
Memory usage:

— SFseq (symbolic sequential), SFpar (symbolic parallel)
— Entire solvers: SLU_SFseq, SLU_SFpar

Memory needs(MB) P=8 P=32 P=128
Nnz(L+U)*10"6 35.0 36.7 36.6
SFseq 35.6 36.5 40.7
SFpar (max) 6.7 3.0 1.6
SFseq / SFpar 5.3 12.2 25.4
Factor 44,7 13.1 4.0
SLU_SFseq 86.4 52.1 45.3
SLU SFpar 58.4 19.5 8.0

15

Fluid flow (2/2)

Runtime in seconds

P=2x4 P =4x8 P =8x16

O parMetis
B Sfseq
B Sfpar

16

Fast solver %

 In the spirit of fast multipole, but for matrix inversion
 Model problem: discretized system Ax = b from certain
PDEs, e.g., 5-point stencil on k x k grid, n=k?

* Nested dissection ordering gave optimal complexity in
exact arithmetic [Hoffman/Martin/Ross]
— Factorization cost: O(n'®) (3D: O(n?))

% | OO Ol’_‘- 00 00
- 1
l [6]

17

Exploit low-rank property %

Au 0 As\(wu f1

Consider top-level dissection:
0 A2 Axs||uz|=|f:2

S is full
— Needs O(k3) to find uj Asr Az Asz)| Us f3
Su; = fa- AstAn ™ fi— AsAxn ™ 2
But, off-diagonal blocks of S has low numerical ranks (e.g. 10~15)
— Uz can be computed in O(k) flops
Generalize to multilevel dissection: all diagonal blocks corresp. to
the separators have the similar low rank structure

Low rank structures can be represented by hierarchical semi-
separable (HSS) matrices [Gu et al.] (... think about SVD)
Factorization complexity ... essentially linear

— 2D: O(p k?), p is related to the problem and tolerance (i.e., numerical
rank)

— 3D: O(c(p) k3), c(p) is a polynomial of p

18

Results of the model problem

* Flops and runtime comparison

—#— Traditional multifrontal
[| —%— Superfast multifrontal

Scaling factors (fl Dpsznfflopsn)
gt e R b e T T |

944, 481, 444, 4 24
Scaling factors {flopsznf‘flopsn]

10°
mesh size — n

time(s)

—%— Traditional multifrontal
[| —&— Superfast multifrontal

Scaling factors {timezn ! timen}
616.640.6 45, 687

527 475,441 420
Scaling factors (i me, ftimen}

10° 10

mesh size —— n

19

. \
FrrFers ‘

Summary -_— :

e Current factorization algorithms can scale to 1000s
processors

 New “fast solver” has potential of scaling to
tera/petascale; demonstration remains open

20

