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Sparse direct linear solver

• Solve A x = b
– Example: A of dimension 106, only 10 ~ 100 nonzeros per row
– No restriction on sparsity pattern (as opposed to structured 

matrices)
• Algorithm: LU factorization: A = LU, followed by 

lower/upper triangular solutions
– Store only nonzeros and perform operations only on nonzeros

• Distinctions from dense solvers
– Need to accommodate fill-in elements
– Reorderings to maintain numerical stability, preserve sparsity, 

and maximize parallelism: Pr A Pc
T = L U

– Irregular, indirect memory access; High communication-to-
computation ratio (latency-bound)
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Available codes

• Survey of different types of factorization codes
http://crd.lbl.gov/~xiaoye/SuperLU/SparseDirectSurvey.pdf
– LLT (s.p.d.),  LDLT (symmetric indefinite),  LU 

(nonsymmetric), QR (least squares)
– Sequential, shared-memory, distributed-memory, out-of-

core
• Distributed-memory solvers: usually MPI-based

– SuperLU_DIST [Li, Demmel, Grigori]
• Accessible from PETSc, Trilinos

– MUMPS, PasTiX, WSMP, . . .
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SuperLU software status

• With Fortran interface
• SuperLU_MT similar to SuperLU both numerically and 

in usage

Real/complex,
Double

Real, doubleReal/complex,
Single/double

Data type

C + MPIC + Pthreads
(or pragmas)

CLanguage

DistributedSMPSerialPlatform

SuperLU_DISTSuperLU_MTSuperLU
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SuperLU_DIST major steps: 
(parallelization perspectives)

• Static numerical pivoting: improve diagonal dominance
– Currently use MC64 (HSL); Parallelization underway [J. 

Riedy]
• Sparsity-preserving ordering

– Can use ParMeTis
• Symbolic factorization: determine pattern of {L\U}

– Being parallelized
• Numerics: factorization, triangular solves, iterative 

refinement  (usually dominate total time)
– Parallelized a while ago; Need to improve load balance, 

latency-hiding
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Supernode

• Exploit dense submatrices in the L & U factors

• Why are they good?
– Permit use of Level 3 BLAS
– Reduce inefficient indirect addressing (scatter/gather)
– Reduce symbolic factorization time by traversing a coarser 

graph
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Distribute the matrices

• Matrices involved:
– A, B (turned into X) – input, users manipulate them
– L, U – output, users do not need to see them

• A (sparse) and B (dense) are distributed by block rows

Local A stored in
Compressed Row Format

– Natural for users, and consistent with other popular 
packages: e.g. PETSc

A B
x     x      x     x

x     x      x

x      x           x

x      x           x

P0

P1

P2
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2D block cyclic layout for {L\U}

• Good for scalability, load balance
• “Re-distribution” phase to distribute the initial values of A 

to the 2D block-cyclic data structure of L & U
– All-to-all communication, entirely parallel
– < 10% of total time for most matrices
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Examples

• Sparsity-preserving ordering: MeTis applied to structure of A’+A

1.064.3400516,019ComplexCircuit sim.
MNA method
(IBM)

matick

40.2526.616834,575RealAccelerator,
Shape 
optimization
(SLAC)

dds15

9.3888.1161589,698RealFusion,
MHD eqns
(PPPL)

matrix181

56.23092.6134,235,364ComplexQuantum
Mechanics
(LBL)

g500

Fill-ratio|L\U|
(10^6)

|A| / N
Sparsity

NData
type

ApplicationName



11

Performance on IBM Power5 (1.9 GHz)

• Up to 454 Gflops factorization rate
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Performance on IBM Power3 (375 MHz)

• Quantum mechanics, complex
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Parallelizing symbolic factorization

• Serial algorithm is fast (usually < 10% total time) but 
requires entire structure of A, limiting memory scalability

• Parallel approach
– Use graph partitioning to reorder/partition matrix.

• ParMetis on structure of A + A’
– Exploit parallelism given by this partition (coarse level) and

by a block cyclic distribution (fine level)
• Summary of results

– Memory: up to 25x reduction of symbolic fact.
up to 5x reduction of the entire solver

– Runtime: up to 14x speedup of symbolic fact.
up to 20% faster of the entire solver
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Matrix partition

• Separator tree
– Balanced tree with balanced data distribution
– Exhibits computational dependencies

• If node j updates node k, then j belongs to subtree rooted 
at k.

P   2
P   0 P   1 P   3

P  2,3P  0,1

P 0,1,2,3
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Fluid flow (1/1)
• bbmat: n = 38,744, nnz = 1.8 M, 34 M fill-ins using ParMetis on 

one processor
• Memory usage:

– SFseq (symbolic sequential),  SFpar (symbolic parallel)
– Entire solvers: SLU_SFseq, SLU_SFpar

Memory needs(MB) P=8 P=32   P=128

Nnz(L+U)*10^6 35.0 36.7 36.6

SFseq 
SFpar  (max) 
SFseq / SFpar 

35.6
6.7
5.3

36.5 
3.0 

12.2 

40.7
1.6

25.4

Factor 44.7 13.1 4.0

SLU_SFseq 
SLU_SFpar 

86.4
58.4

52.1 
19.5 

45.3
8.0
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Fluid flow (2/2)

• Runtime in seconds

0

0.5

1

1.5

2

2.5

P = 2x4 P = 4x8 P = 8x16

parMetis
Sfseq
Sfpar
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Fast solver

• In the spirit of fast multipole, but for matrix inversion
• Model problem: discretized system Ax = b from certain 

PDEs, e.g., 5-point stencil on  k x k  grid,  n = k2

• Nested dissection ordering gave optimal complexity in 
exact arithmetic [Hoffman/Martin/Ross]
– Factorization cost: O(n1.5)    ( 3D: O(n2) )
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Exploit low-rank property

• Consider top-level dissection:
• S is full

– Needs O(k3) to find u3

• But, off-diagonal blocks of S has low numerical ranks (e.g. 10~15)
– u3 can be computed in O(k) flops

• Generalize to multilevel dissection: all diagonal blocks corresp. to 
the separators have the similar low rank structure

• Low rank structures can be represented by hierarchical semi-
separable (HSS) matrices [Gu et al.] (… think about SVD)

• Factorization complexity … essentially linear
– 2D: O(p k2), p is related to the problem and tolerance (i.e., numerical 

rank)
– 3D: O(c(p) k3), c(p) is a polynomial of p
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Results of the model problem

• Flops and runtime comparison
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Summary

• Current factorization algorithms can scale to 1000s 
processors

• New “fast solver” has potential of scaling to 
tera/petascale; demonstration remains open


