
Improving Scalability of
Sparse Direct Linear Solvers

X. Sherry Li
Lawrence Berkeley National Laboratory

CIG Workshop on Geodynamics and Scientific Computing
UT Austin

October 16-17, 2006

2

Acknowledgement

• Supports from DOE, NSF
• Collaborators:

– James Demmel, UC Berkeley
– Laura Grigori, INRIA, France
– Ming Gu, UC Berkeley
– Panayot Vassilevski, Lawrence Livermore National Lab
– Jianlin Xia, UCLA

3

Sparse direct linear solver

• Solve A x = b
– Example: A of dimension 106, only 10 ~ 100 nonzeros per row
– No restriction on sparsity pattern (as opposed to structured

matrices)
• Algorithm: LU factorization: A = LU, followed by

lower/upper triangular solutions
– Store only nonzeros and perform operations only on nonzeros

• Distinctions from dense solvers
– Need to accommodate fill-in elements
– Reorderings to maintain numerical stability, preserve sparsity,

and maximize parallelism: Pr A Pc
T = L U

– Irregular, indirect memory access; High communication-to-
computation ratio (latency-bound)

4

Available codes

• Survey of different types of factorization codes
http://crd.lbl.gov/~xiaoye/SuperLU/SparseDirectSurvey.pdf
– LLT (s.p.d.), LDLT (symmetric indefinite), LU

(nonsymmetric), QR (least squares)
– Sequential, shared-memory, distributed-memory, out-of-

core
• Distributed-memory solvers: usually MPI-based

– SuperLU_DIST [Li, Demmel, Grigori]
• Accessible from PETSc, Trilinos

– MUMPS, PasTiX, WSMP, . . .

5

SuperLU software status

• With Fortran interface
• SuperLU_MT similar to SuperLU both numerically and

in usage

Real/complex,
Double

Real, doubleReal/complex,
Single/double

Data type

C + MPIC + Pthreads
(or pragmas)

CLanguage

DistributedSMPSerialPlatform

SuperLU_DISTSuperLU_MTSuperLU

6

SuperLU_DIST major steps:
(parallelization perspectives)

• Static numerical pivoting: improve diagonal dominance
– Currently use MC64 (HSL); Parallelization underway [J.

Riedy]
• Sparsity-preserving ordering

– Can use ParMeTis
• Symbolic factorization: determine pattern of {L\U}

– Being parallelized
• Numerics: factorization, triangular solves, iterative

refinement (usually dominate total time)
– Parallelized a while ago; Need to improve load balance,

latency-hiding

7

Supernode

• Exploit dense submatrices in the L & U factors

• Why are they good?
– Permit use of Level 3 BLAS
– Reduce inefficient indirect addressing (scatter/gather)
– Reduce symbolic factorization time by traversing a coarser

graph

8

Distribute the matrices

• Matrices involved:
– A, B (turned into X) – input, users manipulate them
– L, U – output, users do not need to see them

• A (sparse) and B (dense) are distributed by block rows

Local A stored in
Compressed Row Format

– Natural for users, and consistent with other popular
packages: e.g. PETSc

A B
x x x x

x x x

x x x

x x x

P0

P1

P2

9

2D block cyclic layout for {L\U}

• Good for scalability, load balance
• “Re-distribution” phase to distribute the initial values of A

to the 2D block-cyclic data structure of L & U
– All-to-all communication, entirely parallel
– < 10% of total time for most matrices

10

Examples

• Sparsity-preserving ordering: MeTis applied to structure of A’+A

1.064.3400516,019ComplexCircuit sim.
MNA method
(IBM)

matick

40.2526.616834,575RealAccelerator,
Shape
optimization
(SLAC)

dds15

9.3888.1161589,698RealFusion,
MHD eqns
(PPPL)

matrix181

56.23092.6134,235,364ComplexQuantum
Mechanics
(LBL)

g500

Fill-ratio|L\U|
(10^6)

|A| / N
Sparsity

NData
type

ApplicationName

11

Performance on IBM Power5 (1.9 GHz)

• Up to 454 Gflops factorization rate

12

Performance on IBM Power3 (375 MHz)

• Quantum mechanics, complex

13

Parallelizing symbolic factorization

• Serial algorithm is fast (usually < 10% total time) but
requires entire structure of A, limiting memory scalability

• Parallel approach
– Use graph partitioning to reorder/partition matrix.

• ParMetis on structure of A + A’
– Exploit parallelism given by this partition (coarse level) and

by a block cyclic distribution (fine level)
• Summary of results

– Memory: up to 25x reduction of symbolic fact.
up to 5x reduction of the entire solver

– Runtime: up to 14x speedup of symbolic fact.
up to 20% faster of the entire solver

14

Matrix partition

• Separator tree
– Balanced tree with balanced data distribution
– Exhibits computational dependencies

• If node j updates node k, then j belongs to subtree rooted
at k.

P 2
P 0 P 1 P 3

P 2,3P 0,1

P 0,1,2,3

15

Fluid flow (1/1)
• bbmat: n = 38,744, nnz = 1.8 M, 34 M fill-ins using ParMetis on

one processor
• Memory usage:

– SFseq (symbolic sequential), SFpar (symbolic parallel)
– Entire solvers: SLU_SFseq, SLU_SFpar

Memory needs(MB) P=8 P=32 P=128

Nnz(L+U)*10^6 35.0 36.7 36.6

SFseq
SFpar (max)
SFseq / SFpar

35.6
6.7
5.3

36.5
3.0

12.2

40.7
1.6

25.4

Factor 44.7 13.1 4.0

SLU_SFseq
SLU_SFpar

86.4
58.4

52.1
19.5

45.3
8.0

16

Fluid flow (2/2)

• Runtime in seconds

0

0.5

1

1.5

2

2.5

P = 2x4 P = 4x8 P = 8x16

parMetis
Sfseq
Sfpar

17

Fast solver

• In the spirit of fast multipole, but for matrix inversion
• Model problem: discretized system Ax = b from certain

PDEs, e.g., 5-point stencil on k x k grid, n = k2

• Nested dissection ordering gave optimal complexity in
exact arithmetic [Hoffman/Martin/Ross]
– Factorization cost: O(n1.5) (3D: O(n2))

18

Exploit low-rank property

• Consider top-level dissection:
• S is full

– Needs O(k3) to find u3

• But, off-diagonal blocks of S has low numerical ranks (e.g. 10~15)
– u3 can be computed in O(k) flops

• Generalize to multilevel dissection: all diagonal blocks corresp. to
the separators have the similar low rank structure

• Low rank structures can be represented by hierarchical semi-
separable (HSS) matrices [Gu et al.] (… think about SVD)

• Factorization complexity … essentially linear
– 2D: O(p k2), p is related to the problem and tolerance (i.e., numerical

rank)
– 3D: O(c(p) k3), c(p) is a polynomial of p

2
1

22321
1

113133

3

2

1

3

2

1

333231

2322

1311

0
0

fAAfAAfuS

f
f
f

u
u
u

AAA
AA
AA

−− −−=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

19

Results of the model problem

• Flops and runtime comparison

20

Summary

• Current factorization algorithms can scale to 1000s
processors

• New “fast solver” has potential of scaling to
tera/petascale; demonstration remains open

