Flow Laws for the Lower Crust and Upper Mantle

David Kohlstedt Department of Geology and Geophysics University of Minnesota

Constitutive Equations / Flow Laws

$$\dot{\varepsilon} = \dot{\varepsilon} \left(\sigma, T, P, f_{H_2O}, a_{ox}, \dots, S, d, \dots, \Phi, \phi, \dots \right)$$

$$η = η(σ, T, P, f_{H_2O}, a_{ox}, ..., S, d, ..., Φ, φ, ...)$$

Flow Laws for Steady-State Deformation – Diffusion Creep

Grain-matrix diffusion

$$\dot{\varepsilon}_{\rm NH} = \alpha_{\rm NH} \frac{\sigma V_{\rm m}}{RT} \frac{D_{\rm gm}}{d^2}$$

$$D_{\rm gm} = D_{\rm gm}^{\rm o} \exp\left(-\frac{\Delta E_{\rm gm} + P\Delta V_{\rm gm}}{RT}\right)$$
$$= D_{\rm gm}^{\rm o} \exp\left(-\frac{\Delta H_{\rm gm}}{RT}\right)$$

Grain-boundary diffusion

$$\dot{\varepsilon}_{\rm C} = \alpha_{\rm C} \frac{\sigma V_{\rm m}}{RT} \frac{\delta D_{\rm gb}}{d^3}$$

$$D_{gb} = D_{gb}^{o} \exp\left(-\frac{\Delta E_{gb} + P\Delta V_{gb}}{RT}\right)$$
$$= D_{gb}^{o} \exp\left(-\frac{\Delta H_{gb}}{RT}\right)$$

Flow Laws for Steady-State Deformation – Diffusion Creep

$$\dot{\varepsilon}_{\rm diff} = 14 \left(\frac{\sigma V_{\rm m}}{RT} \right) \left(D_{\rm gm} + \frac{\pi \delta D_{\rm gb}}{d} \right) \left(\frac{1}{d^2} \right)$$

$$D = D^{\circ} \exp\left(-\frac{\Delta H}{RT}\right)$$

$$\Delta H_{\rm gb} < \Delta H_{\rm gm}$$

slowest ion along fastest path

Flow Laws for Steady-State Deformation – Dislocation Creep

High-Temperature Deformation – Dislocation Climb

http://www.techfak.uni-kiel.de/matwis/amat/def_en/index.html

Flow Laws for Steady-State Deformation – High-Temperature Dislocation Creep

$$\dot{\varepsilon} = A \frac{\sigma^n}{d^m} f_{O_2}^p f_{H_2O}^q \exp\left(-\frac{Q_{cr}}{RT}\right)$$

Origin of Dependence of Visicosity on Fugacity

10N

$$\begin{split} X_{\rm ion} D_{\rm ion} &= X_{\rm V} D_{\rm V} \\ X_{\rm ion} &= \left(1 - X_{\rm V}\right) \approx 1 \\ D_{\rm ion} &\approx X_{\rm V} D_{\rm V} \\ \end{split}$$
$$\begin{split} D_{\rm ion} &\ll D_{\rm V} \qquad D_{\rm ion} \propto X_{\rm V} \propto f_{\rm O_2}^p f_{\rm H_2O}^q \end{split}$$

ion

V

Dislocation-Accommodated Grain Boundary Sliding

Flow Laws for Steady-State Deformation – Dislocation-Accommodated Grain Boundary Sliding

$$\dot{\varepsilon} = B_{gbs} \frac{D_{gm}}{d^1} \frac{GV_m}{RT} \left(\frac{\sigma}{G}\right)^2$$

$$\dot{\varepsilon} = A_{gbs} \frac{D_{gb}}{d^2} \frac{GV_m}{RT} \left(\frac{\sigma}{G}\right)^2$$

d_{sos}	>	d
Ses		

Low-Temperature Deformation – Dislocation Glide

http://www.techfak.uni-kiel.de/matwis/amat/def_en/index.html

Flow Laws for Steady-State Deformation – Low-Temperature Dislocation Creep

$$\overline{\boldsymbol{u}} \approx \boldsymbol{u}_{g} = c_{k} \boldsymbol{u}_{k}$$

$$\Delta H_{k}(\sigma) = \Delta H_{k}^{o} \left[1 - \left(\frac{\sigma}{\sigma_{P}} \right)^{r} \right]^{s}$$

$$\dot{\varepsilon} = \dot{\varepsilon}_{\rm P} \left(\frac{\sigma}{G}\right)^2 \exp \left\{\frac{\Delta H_k^{\rm o}}{RT} \left[1 - \left(\frac{\sigma}{\sigma_{\rm P}}\right)^r\right]^s\right\}$$

 σ_{P} = Peierls stress, intrinsic lattice resistance to glide

Deformation Mechanism Map – σ vs T

Deformation Mechanism Map – σ vs d

Viscosity Profiles vs Glacial Isostatic Adjustment Global Average

Viscosity Profiles vs Glacial Isostatic Adjustment Western U.S.

Comparison of Flow Behavior of Several Single-Phase Rocks Deformed **Under Wet** and Dry Conditions

> Chopra and Paterson (1981) Rybacki and Dresen (2000) Mei and Kohlstedt (2000) Bystricky and Mackwell (2001) Chen et al. (2006)

Why the Emphasis on Single-Phase Rather than Multi-Phase Rocks?

eutectic melting

Low-Temperature Plasticity

Low-Temperature Plasticity

Melt Distribution in Partially Molten Rock

Flow Behavior of Partially Molten Rock

Flow Behavior of Partially Molten Rock

High-Strain Torsion Experiments

constant twist-rate or torque applied from above

Torsional Deformation of Partially Molten Rock

Melt Segregation in Shear Partially Molten Rock

radial section **Torsional Deformation** of Partially Molten Rock H $\tau_r \alpha r^{1/n}$ $\gamma_r = \theta r / H$ $\dot{\gamma} \alpha \tau^n$ tangent section mm

radial section

LPO from Shear Partially Molten Rock

TR3, An₇₀ ∮ ≈ 0.07 (10 vol% MORB added), Y = 5

High-Pressure, High-Temperature Apparatuses

Deformation-DIA Sample Assembly

samples 1 mm in diameter

Viscosity Profiles vs Geoid and Rebound

Viscosity Profiles vs Geoid and Rebound

Constitutive Equations: Non-Steady State

$$\dot{\varepsilon} = \dot{\varepsilon} \left(\sigma, T, P, f_{H_2O}, a_{ox}, \dots, S, d, \dots, \Phi, \phi, \dots \right)$$

$$\dot{\mathbf{c}} = \dot{\mathbf{c}} \left(\sigma, T, P, f_{\mathrm{H}_{2}\mathrm{O}}, a_{\mathrm{ox}}, \dots, S, d, \dots, \Phi, \phi, \dots, c, t \right)$$

$$\dot{\varepsilon} = \dot{\varepsilon} \left(\sigma, T, P, f_{H_2O}, a_{ox}, \dots, S, d, \dots, \Phi, \phi, \dots, \sigma^*, d\sigma^* / dt \right)$$

 σ^* = hardness parameter, *Hart* (1970) measure of resistance of grains to dislocation movement possibly correlates with sub-grain size, *Stone et al.* (2004)

Detailed View of a Melt-Rich Band

olivine + 25 vol % chromite + 6% MORB, γ = 3, σ = 100 MPa

Deformation Mechanism Map – σ vs d

Deformation Mechanism Map – σ vs T

